1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* Number of total bits in the bottom level. */ 57 uint64_t size; 58 59 /* Number of set bits in the bottom level. */ 60 uint64_t count; 61 62 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 63 * will actually represent a group of 2^G elements. Each operation on a 64 * range of bits first rounds the bits to determine which group they land 65 * in, and then affect the entire page; iteration will only visit the first 66 * bit of each group. Here is an example of operations in a size-16, 67 * granularity-1 HBitmap: 68 * 69 * initial state 00000000 70 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 71 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 72 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 73 * reset(start=5, count=5) 00000000 74 * 75 * From an implementation point of view, when setting or resetting bits, 76 * the bitmap will scale bit numbers right by this amount of bits. When 77 * iterating, the bitmap will scale bit numbers left by this amount of 78 * bits. 79 */ 80 int granularity; 81 82 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 83 HBitmap *meta; 84 85 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 86 * coarsest). Each bit in level N represents a word in level N+1 that 87 * has a set bit, except the last level where each bit represents the 88 * actual bitmap. 89 * 90 * Note that all bitmaps have the same number of levels. Even a 1-bit 91 * bitmap will still allocate HBITMAP_LEVELS arrays. 92 */ 93 unsigned long *levels[HBITMAP_LEVELS]; 94 95 /* The length of each levels[] array. */ 96 uint64_t sizes[HBITMAP_LEVELS]; 97 }; 98 99 /* Advance hbi to the next nonzero word and return it. hbi->pos 100 * is updated. Returns zero if we reach the end of the bitmap. 101 */ 102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 103 { 104 size_t pos = hbi->pos; 105 const HBitmap *hb = hbi->hb; 106 unsigned i = HBITMAP_LEVELS - 1; 107 108 unsigned long cur; 109 do { 110 i--; 111 pos >>= BITS_PER_LEVEL; 112 cur = hbi->cur[i] & hb->levels[i][pos]; 113 } while (cur == 0); 114 115 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 116 * bits in the level 0 bitmap; thus we can repurpose the most significant 117 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 118 * that the above loop ends even without an explicit check on i. 119 */ 120 121 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 122 return 0; 123 } 124 for (; i < HBITMAP_LEVELS - 1; i++) { 125 /* Shift back pos to the left, matching the right shifts above. 126 * The index of this word's least significant set bit provides 127 * the low-order bits. 128 */ 129 assert(cur); 130 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 131 hbi->cur[i] = cur & (cur - 1); 132 133 /* Set up next level for iteration. */ 134 cur = hb->levels[i + 1][pos]; 135 } 136 137 hbi->pos = pos; 138 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 139 140 assert(cur); 141 return cur; 142 } 143 144 int64_t hbitmap_iter_next(HBitmapIter *hbi) 145 { 146 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 147 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 148 int64_t item; 149 150 if (cur == 0) { 151 cur = hbitmap_iter_skip_words(hbi); 152 if (cur == 0) { 153 return -1; 154 } 155 } 156 157 /* The next call will resume work from the next bit. */ 158 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 159 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 160 161 return item << hbi->granularity; 162 } 163 164 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 165 { 166 unsigned i, bit; 167 uint64_t pos; 168 169 hbi->hb = hb; 170 pos = first >> hb->granularity; 171 assert(pos < hb->size); 172 hbi->pos = pos >> BITS_PER_LEVEL; 173 hbi->granularity = hb->granularity; 174 175 for (i = HBITMAP_LEVELS; i-- > 0; ) { 176 bit = pos & (BITS_PER_LONG - 1); 177 pos >>= BITS_PER_LEVEL; 178 179 /* Drop bits representing items before first. */ 180 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 181 182 /* We have already added level i+1, so the lowest set bit has 183 * been processed. Clear it. 184 */ 185 if (i != HBITMAP_LEVELS - 1) { 186 hbi->cur[i] &= ~(1UL << bit); 187 } 188 } 189 } 190 191 bool hbitmap_empty(const HBitmap *hb) 192 { 193 return hb->count == 0; 194 } 195 196 int hbitmap_granularity(const HBitmap *hb) 197 { 198 return hb->granularity; 199 } 200 201 uint64_t hbitmap_count(const HBitmap *hb) 202 { 203 return hb->count << hb->granularity; 204 } 205 206 /* Count the number of set bits between start and end, not accounting for 207 * the granularity. Also an example of how to use hbitmap_iter_next_word. 208 */ 209 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 210 { 211 HBitmapIter hbi; 212 uint64_t count = 0; 213 uint64_t end = last + 1; 214 unsigned long cur; 215 size_t pos; 216 217 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 218 for (;;) { 219 pos = hbitmap_iter_next_word(&hbi, &cur); 220 if (pos >= (end >> BITS_PER_LEVEL)) { 221 break; 222 } 223 count += ctpopl(cur); 224 } 225 226 if (pos == (end >> BITS_PER_LEVEL)) { 227 /* Drop bits representing the END-th and subsequent items. */ 228 int bit = end & (BITS_PER_LONG - 1); 229 cur &= (1UL << bit) - 1; 230 count += ctpopl(cur); 231 } 232 233 return count; 234 } 235 236 /* Setting starts at the last layer and propagates up if an element 237 * changes. 238 */ 239 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 240 { 241 unsigned long mask; 242 unsigned long old; 243 244 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 245 assert(start <= last); 246 247 mask = 2UL << (last & (BITS_PER_LONG - 1)); 248 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 249 old = *elem; 250 *elem |= mask; 251 return old != *elem; 252 } 253 254 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 255 * Returns true if at least one bit is changed. */ 256 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 257 uint64_t last) 258 { 259 size_t pos = start >> BITS_PER_LEVEL; 260 size_t lastpos = last >> BITS_PER_LEVEL; 261 bool changed = false; 262 size_t i; 263 264 i = pos; 265 if (i < lastpos) { 266 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 267 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 268 for (;;) { 269 start = next; 270 next += BITS_PER_LONG; 271 if (++i == lastpos) { 272 break; 273 } 274 changed |= (hb->levels[level][i] == 0); 275 hb->levels[level][i] = ~0UL; 276 } 277 } 278 changed |= hb_set_elem(&hb->levels[level][i], start, last); 279 280 /* If there was any change in this layer, we may have to update 281 * the one above. 282 */ 283 if (level > 0 && changed) { 284 hb_set_between(hb, level - 1, pos, lastpos); 285 } 286 return changed; 287 } 288 289 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 290 { 291 /* Compute range in the last layer. */ 292 uint64_t first, n; 293 uint64_t last = start + count - 1; 294 295 trace_hbitmap_set(hb, start, count, 296 start >> hb->granularity, last >> hb->granularity); 297 298 first = start >> hb->granularity; 299 last >>= hb->granularity; 300 assert(last < hb->size); 301 n = last - first + 1; 302 303 hb->count += n - hb_count_between(hb, first, last); 304 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 305 hb->meta) { 306 hbitmap_set(hb->meta, start, count); 307 } 308 } 309 310 /* Resetting works the other way round: propagate up if the new 311 * value is zero. 312 */ 313 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 314 { 315 unsigned long mask; 316 bool blanked; 317 318 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 319 assert(start <= last); 320 321 mask = 2UL << (last & (BITS_PER_LONG - 1)); 322 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 323 blanked = *elem != 0 && ((*elem & ~mask) == 0); 324 *elem &= ~mask; 325 return blanked; 326 } 327 328 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 329 * Returns true if at least one bit is changed. */ 330 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 331 uint64_t last) 332 { 333 size_t pos = start >> BITS_PER_LEVEL; 334 size_t lastpos = last >> BITS_PER_LEVEL; 335 bool changed = false; 336 size_t i; 337 338 i = pos; 339 if (i < lastpos) { 340 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 341 342 /* Here we need a more complex test than when setting bits. Even if 343 * something was changed, we must not blank bits in the upper level 344 * unless the lower-level word became entirely zero. So, remove pos 345 * from the upper-level range if bits remain set. 346 */ 347 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 348 changed = true; 349 } else { 350 pos++; 351 } 352 353 for (;;) { 354 start = next; 355 next += BITS_PER_LONG; 356 if (++i == lastpos) { 357 break; 358 } 359 changed |= (hb->levels[level][i] != 0); 360 hb->levels[level][i] = 0UL; 361 } 362 } 363 364 /* Same as above, this time for lastpos. */ 365 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 366 changed = true; 367 } else { 368 lastpos--; 369 } 370 371 if (level > 0 && changed) { 372 hb_reset_between(hb, level - 1, pos, lastpos); 373 } 374 375 return changed; 376 377 } 378 379 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 380 { 381 /* Compute range in the last layer. */ 382 uint64_t first; 383 uint64_t last = start + count - 1; 384 385 trace_hbitmap_reset(hb, start, count, 386 start >> hb->granularity, last >> hb->granularity); 387 388 first = start >> hb->granularity; 389 last >>= hb->granularity; 390 assert(last < hb->size); 391 392 hb->count -= hb_count_between(hb, first, last); 393 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 394 hb->meta) { 395 hbitmap_set(hb->meta, start, count); 396 } 397 } 398 399 void hbitmap_reset_all(HBitmap *hb) 400 { 401 unsigned int i; 402 403 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 404 for (i = HBITMAP_LEVELS; --i >= 1; ) { 405 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 406 } 407 408 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 409 hb->count = 0; 410 } 411 412 bool hbitmap_is_serializable(const HBitmap *hb) 413 { 414 /* Every serialized chunk must be aligned to 64 bits so that endianness 415 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 416 * We have hbitmap_serialization_granularity() which converts this 417 * alignment requirement from bitmap bits to items covered (e.g. sectors). 418 * That value is: 419 * 64 << hb->granularity 420 * Since this value must not exceed UINT64_MAX, hb->granularity must be 421 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 422 * 423 * In order for hbitmap_serialization_granularity() to always return a 424 * meaningful value, bitmaps that are to be serialized must have a 425 * granularity of less than 58. */ 426 427 return hb->granularity < 58; 428 } 429 430 bool hbitmap_get(const HBitmap *hb, uint64_t item) 431 { 432 /* Compute position and bit in the last layer. */ 433 uint64_t pos = item >> hb->granularity; 434 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 435 assert(pos < hb->size); 436 437 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 438 } 439 440 uint64_t hbitmap_serialization_granularity(const HBitmap *hb) 441 { 442 assert(hbitmap_is_serializable(hb)); 443 444 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 445 * hosts. */ 446 return UINT64_C(64) << hb->granularity; 447 } 448 449 /* Start should be aligned to serialization granularity, chunk size should be 450 * aligned to serialization granularity too, except for last chunk. 451 */ 452 static void serialization_chunk(const HBitmap *hb, 453 uint64_t start, uint64_t count, 454 unsigned long **first_el, uint64_t *el_count) 455 { 456 uint64_t last = start + count - 1; 457 uint64_t gran = hbitmap_serialization_granularity(hb); 458 459 assert((start & (gran - 1)) == 0); 460 assert((last >> hb->granularity) < hb->size); 461 if ((last >> hb->granularity) != hb->size - 1) { 462 assert((count & (gran - 1)) == 0); 463 } 464 465 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 466 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 467 468 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 469 *el_count = last - start + 1; 470 } 471 472 uint64_t hbitmap_serialization_size(const HBitmap *hb, 473 uint64_t start, uint64_t count) 474 { 475 uint64_t el_count; 476 unsigned long *cur; 477 478 if (!count) { 479 return 0; 480 } 481 serialization_chunk(hb, start, count, &cur, &el_count); 482 483 return el_count * sizeof(unsigned long); 484 } 485 486 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 487 uint64_t start, uint64_t count) 488 { 489 uint64_t el_count; 490 unsigned long *cur, *end; 491 492 if (!count) { 493 return; 494 } 495 serialization_chunk(hb, start, count, &cur, &el_count); 496 end = cur + el_count; 497 498 while (cur != end) { 499 unsigned long el = 500 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 501 502 memcpy(buf, &el, sizeof(el)); 503 buf += sizeof(el); 504 cur++; 505 } 506 } 507 508 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 509 uint64_t start, uint64_t count, 510 bool finish) 511 { 512 uint64_t el_count; 513 unsigned long *cur, *end; 514 515 if (!count) { 516 return; 517 } 518 serialization_chunk(hb, start, count, &cur, &el_count); 519 end = cur + el_count; 520 521 while (cur != end) { 522 memcpy(cur, buf, sizeof(*cur)); 523 524 if (BITS_PER_LONG == 32) { 525 le32_to_cpus((uint32_t *)cur); 526 } else { 527 le64_to_cpus((uint64_t *)cur); 528 } 529 530 buf += sizeof(unsigned long); 531 cur++; 532 } 533 if (finish) { 534 hbitmap_deserialize_finish(hb); 535 } 536 } 537 538 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 539 bool finish) 540 { 541 uint64_t el_count; 542 unsigned long *first; 543 544 if (!count) { 545 return; 546 } 547 serialization_chunk(hb, start, count, &first, &el_count); 548 549 memset(first, 0, el_count * sizeof(unsigned long)); 550 if (finish) { 551 hbitmap_deserialize_finish(hb); 552 } 553 } 554 555 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 556 bool finish) 557 { 558 uint64_t el_count; 559 unsigned long *first; 560 561 if (!count) { 562 return; 563 } 564 serialization_chunk(hb, start, count, &first, &el_count); 565 566 memset(first, 0xff, el_count * sizeof(unsigned long)); 567 if (finish) { 568 hbitmap_deserialize_finish(hb); 569 } 570 } 571 572 void hbitmap_deserialize_finish(HBitmap *bitmap) 573 { 574 int64_t i, size, prev_size; 575 int lev; 576 577 /* restore levels starting from penultimate to zero level, assuming 578 * that the last level is ok */ 579 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 580 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 581 prev_size = size; 582 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 583 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 584 585 for (i = 0; i < prev_size; ++i) { 586 if (bitmap->levels[lev + 1][i]) { 587 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 588 1UL << (i & (BITS_PER_LONG - 1)); 589 } 590 } 591 } 592 593 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 594 } 595 596 void hbitmap_free(HBitmap *hb) 597 { 598 unsigned i; 599 assert(!hb->meta); 600 for (i = HBITMAP_LEVELS; i-- > 0; ) { 601 g_free(hb->levels[i]); 602 } 603 g_free(hb); 604 } 605 606 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 607 { 608 HBitmap *hb = g_new0(struct HBitmap, 1); 609 unsigned i; 610 611 assert(granularity >= 0 && granularity < 64); 612 size = (size + (1ULL << granularity) - 1) >> granularity; 613 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 614 615 hb->size = size; 616 hb->granularity = granularity; 617 for (i = HBITMAP_LEVELS; i-- > 0; ) { 618 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 619 hb->sizes[i] = size; 620 hb->levels[i] = g_new0(unsigned long, size); 621 } 622 623 /* We necessarily have free bits in level 0 due to the definition 624 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 625 * hbitmap_iter_skip_words. 626 */ 627 assert(size == 1); 628 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 629 return hb; 630 } 631 632 void hbitmap_truncate(HBitmap *hb, uint64_t size) 633 { 634 bool shrink; 635 unsigned i; 636 uint64_t num_elements = size; 637 uint64_t old; 638 639 /* Size comes in as logical elements, adjust for granularity. */ 640 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 641 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 642 shrink = size < hb->size; 643 644 /* bit sizes are identical; nothing to do. */ 645 if (size == hb->size) { 646 return; 647 } 648 649 /* If we're losing bits, let's clear those bits before we invalidate all of 650 * our invariants. This helps keep the bitcount consistent, and will prevent 651 * us from carrying around garbage bits beyond the end of the map. 652 */ 653 if (shrink) { 654 /* Don't clear partial granularity groups; 655 * start at the first full one. */ 656 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 657 uint64_t fix_count = (hb->size << hb->granularity) - start; 658 659 assert(fix_count); 660 hbitmap_reset(hb, start, fix_count); 661 } 662 663 hb->size = size; 664 for (i = HBITMAP_LEVELS; i-- > 0; ) { 665 size = MAX(BITS_TO_LONGS(size), 1); 666 if (hb->sizes[i] == size) { 667 break; 668 } 669 old = hb->sizes[i]; 670 hb->sizes[i] = size; 671 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 672 if (!shrink) { 673 memset(&hb->levels[i][old], 0x00, 674 (size - old) * sizeof(*hb->levels[i])); 675 } 676 } 677 if (hb->meta) { 678 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 679 } 680 } 681 682 683 /** 684 * Given HBitmaps A and B, let A := A (BITOR) B. 685 * Bitmap B will not be modified. 686 * 687 * @return true if the merge was successful, 688 * false if it was not attempted. 689 */ 690 bool hbitmap_merge(HBitmap *a, const HBitmap *b) 691 { 692 int i; 693 uint64_t j; 694 695 if ((a->size != b->size) || (a->granularity != b->granularity)) { 696 return false; 697 } 698 699 if (hbitmap_count(b) == 0) { 700 return true; 701 } 702 703 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 704 * It may be possible to improve running times for sparsely populated maps 705 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 706 */ 707 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 708 for (j = 0; j < a->sizes[i]; j++) { 709 a->levels[i][j] |= b->levels[i][j]; 710 } 711 } 712 713 return true; 714 } 715 716 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 717 { 718 assert(!(chunk_size & (chunk_size - 1))); 719 assert(!hb->meta); 720 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 721 hb->granularity + ctz32(chunk_size)); 722 return hb->meta; 723 } 724 725 void hbitmap_free_meta(HBitmap *hb) 726 { 727 assert(hb->meta); 728 hbitmap_free(hb->meta); 729 hb->meta = NULL; 730 } 731 732 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 733 { 734 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 735 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 736 char *hash = NULL; 737 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 738 739 return hash; 740 } 741