1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include <glib.h> 14 #include "qemu/hbitmap.h" 15 #include "qemu/host-utils.h" 16 #include "trace.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* Number of total bits in the bottom level. */ 57 uint64_t size; 58 59 /* Number of set bits in the bottom level. */ 60 uint64_t count; 61 62 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 63 * will actually represent a group of 2^G elements. Each operation on a 64 * range of bits first rounds the bits to determine which group they land 65 * in, and then affect the entire page; iteration will only visit the first 66 * bit of each group. Here is an example of operations in a size-16, 67 * granularity-1 HBitmap: 68 * 69 * initial state 00000000 70 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 71 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 72 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 73 * reset(start=5, count=5) 00000000 74 * 75 * From an implementation point of view, when setting or resetting bits, 76 * the bitmap will scale bit numbers right by this amount of bits. When 77 * iterating, the bitmap will scale bit numbers left by this amount of 78 * bits. 79 */ 80 int granularity; 81 82 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 83 * coarsest). Each bit in level N represents a word in level N+1 that 84 * has a set bit, except the last level where each bit represents the 85 * actual bitmap. 86 * 87 * Note that all bitmaps have the same number of levels. Even a 1-bit 88 * bitmap will still allocate HBITMAP_LEVELS arrays. 89 */ 90 unsigned long *levels[HBITMAP_LEVELS]; 91 92 /* The length of each levels[] array. */ 93 uint64_t sizes[HBITMAP_LEVELS]; 94 }; 95 96 /* Advance hbi to the next nonzero word and return it. hbi->pos 97 * is updated. Returns zero if we reach the end of the bitmap. 98 */ 99 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 100 { 101 size_t pos = hbi->pos; 102 const HBitmap *hb = hbi->hb; 103 unsigned i = HBITMAP_LEVELS - 1; 104 105 unsigned long cur; 106 do { 107 cur = hbi->cur[--i]; 108 pos >>= BITS_PER_LEVEL; 109 } while (cur == 0); 110 111 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 112 * bits in the level 0 bitmap; thus we can repurpose the most significant 113 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 114 * that the above loop ends even without an explicit check on i. 115 */ 116 117 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 118 return 0; 119 } 120 for (; i < HBITMAP_LEVELS - 1; i++) { 121 /* Shift back pos to the left, matching the right shifts above. 122 * The index of this word's least significant set bit provides 123 * the low-order bits. 124 */ 125 assert(cur); 126 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 127 hbi->cur[i] = cur & (cur - 1); 128 129 /* Set up next level for iteration. */ 130 cur = hb->levels[i + 1][pos]; 131 } 132 133 hbi->pos = pos; 134 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 135 136 assert(cur); 137 return cur; 138 } 139 140 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 141 { 142 unsigned i, bit; 143 uint64_t pos; 144 145 hbi->hb = hb; 146 pos = first >> hb->granularity; 147 assert(pos < hb->size); 148 hbi->pos = pos >> BITS_PER_LEVEL; 149 hbi->granularity = hb->granularity; 150 151 for (i = HBITMAP_LEVELS; i-- > 0; ) { 152 bit = pos & (BITS_PER_LONG - 1); 153 pos >>= BITS_PER_LEVEL; 154 155 /* Drop bits representing items before first. */ 156 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 157 158 /* We have already added level i+1, so the lowest set bit has 159 * been processed. Clear it. 160 */ 161 if (i != HBITMAP_LEVELS - 1) { 162 hbi->cur[i] &= ~(1UL << bit); 163 } 164 } 165 } 166 167 bool hbitmap_empty(const HBitmap *hb) 168 { 169 return hb->count == 0; 170 } 171 172 int hbitmap_granularity(const HBitmap *hb) 173 { 174 return hb->granularity; 175 } 176 177 uint64_t hbitmap_count(const HBitmap *hb) 178 { 179 return hb->count << hb->granularity; 180 } 181 182 /* Count the number of set bits between start and end, not accounting for 183 * the granularity. Also an example of how to use hbitmap_iter_next_word. 184 */ 185 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 186 { 187 HBitmapIter hbi; 188 uint64_t count = 0; 189 uint64_t end = last + 1; 190 unsigned long cur; 191 size_t pos; 192 193 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 194 for (;;) { 195 pos = hbitmap_iter_next_word(&hbi, &cur); 196 if (pos >= (end >> BITS_PER_LEVEL)) { 197 break; 198 } 199 count += ctpopl(cur); 200 } 201 202 if (pos == (end >> BITS_PER_LEVEL)) { 203 /* Drop bits representing the END-th and subsequent items. */ 204 int bit = end & (BITS_PER_LONG - 1); 205 cur &= (1UL << bit) - 1; 206 count += ctpopl(cur); 207 } 208 209 return count; 210 } 211 212 /* Setting starts at the last layer and propagates up if an element 213 * changes from zero to non-zero. 214 */ 215 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 216 { 217 unsigned long mask; 218 bool changed; 219 220 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 221 assert(start <= last); 222 223 mask = 2UL << (last & (BITS_PER_LONG - 1)); 224 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 225 changed = (*elem == 0); 226 *elem |= mask; 227 return changed; 228 } 229 230 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */ 231 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last) 232 { 233 size_t pos = start >> BITS_PER_LEVEL; 234 size_t lastpos = last >> BITS_PER_LEVEL; 235 bool changed = false; 236 size_t i; 237 238 i = pos; 239 if (i < lastpos) { 240 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 241 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 242 for (;;) { 243 start = next; 244 next += BITS_PER_LONG; 245 if (++i == lastpos) { 246 break; 247 } 248 changed |= (hb->levels[level][i] == 0); 249 hb->levels[level][i] = ~0UL; 250 } 251 } 252 changed |= hb_set_elem(&hb->levels[level][i], start, last); 253 254 /* If there was any change in this layer, we may have to update 255 * the one above. 256 */ 257 if (level > 0 && changed) { 258 hb_set_between(hb, level - 1, pos, lastpos); 259 } 260 } 261 262 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 263 { 264 /* Compute range in the last layer. */ 265 uint64_t last = start + count - 1; 266 267 trace_hbitmap_set(hb, start, count, 268 start >> hb->granularity, last >> hb->granularity); 269 270 start >>= hb->granularity; 271 last >>= hb->granularity; 272 count = last - start + 1; 273 274 hb->count += count - hb_count_between(hb, start, last); 275 hb_set_between(hb, HBITMAP_LEVELS - 1, start, last); 276 } 277 278 /* Resetting works the other way round: propagate up if the new 279 * value is zero. 280 */ 281 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 282 { 283 unsigned long mask; 284 bool blanked; 285 286 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 287 assert(start <= last); 288 289 mask = 2UL << (last & (BITS_PER_LONG - 1)); 290 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 291 blanked = *elem != 0 && ((*elem & ~mask) == 0); 292 *elem &= ~mask; 293 return blanked; 294 } 295 296 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */ 297 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last) 298 { 299 size_t pos = start >> BITS_PER_LEVEL; 300 size_t lastpos = last >> BITS_PER_LEVEL; 301 bool changed = false; 302 size_t i; 303 304 i = pos; 305 if (i < lastpos) { 306 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 307 308 /* Here we need a more complex test than when setting bits. Even if 309 * something was changed, we must not blank bits in the upper level 310 * unless the lower-level word became entirely zero. So, remove pos 311 * from the upper-level range if bits remain set. 312 */ 313 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 314 changed = true; 315 } else { 316 pos++; 317 } 318 319 for (;;) { 320 start = next; 321 next += BITS_PER_LONG; 322 if (++i == lastpos) { 323 break; 324 } 325 changed |= (hb->levels[level][i] != 0); 326 hb->levels[level][i] = 0UL; 327 } 328 } 329 330 /* Same as above, this time for lastpos. */ 331 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 332 changed = true; 333 } else { 334 lastpos--; 335 } 336 337 if (level > 0 && changed) { 338 hb_reset_between(hb, level - 1, pos, lastpos); 339 } 340 } 341 342 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 343 { 344 /* Compute range in the last layer. */ 345 uint64_t last = start + count - 1; 346 347 trace_hbitmap_reset(hb, start, count, 348 start >> hb->granularity, last >> hb->granularity); 349 350 start >>= hb->granularity; 351 last >>= hb->granularity; 352 353 hb->count -= hb_count_between(hb, start, last); 354 hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last); 355 } 356 357 void hbitmap_reset_all(HBitmap *hb) 358 { 359 unsigned int i; 360 361 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 362 for (i = HBITMAP_LEVELS; --i >= 1; ) { 363 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 364 } 365 366 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 367 hb->count = 0; 368 } 369 370 bool hbitmap_get(const HBitmap *hb, uint64_t item) 371 { 372 /* Compute position and bit in the last layer. */ 373 uint64_t pos = item >> hb->granularity; 374 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 375 376 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 377 } 378 379 void hbitmap_free(HBitmap *hb) 380 { 381 unsigned i; 382 for (i = HBITMAP_LEVELS; i-- > 0; ) { 383 g_free(hb->levels[i]); 384 } 385 g_free(hb); 386 } 387 388 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 389 { 390 HBitmap *hb = g_new0(struct HBitmap, 1); 391 unsigned i; 392 393 assert(granularity >= 0 && granularity < 64); 394 size = (size + (1ULL << granularity) - 1) >> granularity; 395 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 396 397 hb->size = size; 398 hb->granularity = granularity; 399 for (i = HBITMAP_LEVELS; i-- > 0; ) { 400 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 401 hb->sizes[i] = size; 402 hb->levels[i] = g_new0(unsigned long, size); 403 } 404 405 /* We necessarily have free bits in level 0 due to the definition 406 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 407 * hbitmap_iter_skip_words. 408 */ 409 assert(size == 1); 410 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 411 return hb; 412 } 413 414 void hbitmap_truncate(HBitmap *hb, uint64_t size) 415 { 416 bool shrink; 417 unsigned i; 418 uint64_t num_elements = size; 419 uint64_t old; 420 421 /* Size comes in as logical elements, adjust for granularity. */ 422 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 423 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 424 shrink = size < hb->size; 425 426 /* bit sizes are identical; nothing to do. */ 427 if (size == hb->size) { 428 return; 429 } 430 431 /* If we're losing bits, let's clear those bits before we invalidate all of 432 * our invariants. This helps keep the bitcount consistent, and will prevent 433 * us from carrying around garbage bits beyond the end of the map. 434 */ 435 if (shrink) { 436 /* Don't clear partial granularity groups; 437 * start at the first full one. */ 438 uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity); 439 uint64_t fix_count = (hb->size << hb->granularity) - start; 440 441 assert(fix_count); 442 hbitmap_reset(hb, start, fix_count); 443 } 444 445 hb->size = size; 446 for (i = HBITMAP_LEVELS; i-- > 0; ) { 447 size = MAX(BITS_TO_LONGS(size), 1); 448 if (hb->sizes[i] == size) { 449 break; 450 } 451 old = hb->sizes[i]; 452 hb->sizes[i] = size; 453 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 454 if (!shrink) { 455 memset(&hb->levels[i][old], 0x00, 456 (size - old) * sizeof(*hb->levels[i])); 457 } 458 } 459 } 460 461 462 /** 463 * Given HBitmaps A and B, let A := A (BITOR) B. 464 * Bitmap B will not be modified. 465 * 466 * @return true if the merge was successful, 467 * false if it was not attempted. 468 */ 469 bool hbitmap_merge(HBitmap *a, const HBitmap *b) 470 { 471 int i; 472 uint64_t j; 473 474 if ((a->size != b->size) || (a->granularity != b->granularity)) { 475 return false; 476 } 477 478 if (hbitmap_count(b) == 0) { 479 return true; 480 } 481 482 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 483 * It may be possible to improve running times for sparsely populated maps 484 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 485 */ 486 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 487 for (j = 0; j < a->sizes[i]; j++) { 488 a->levels[i][j] |= b->levels[i][j]; 489 } 490 } 491 492 return true; 493 } 494