xref: /openbmc/qemu/util/hbitmap.c (revision c964b660)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include <glib.h>
14 #include "qemu/hbitmap.h"
15 #include "qemu/host-utils.h"
16 #include "trace.h"
17 
18 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
19  * array of unsigned longs, but HBitmap is also optimized to provide fast
20  * iteration over set bits; going from one bit to the next is O(logB n)
21  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22  * that the number of levels is in fact fixed.
23  *
24  * In order to do this, it stacks multiple bitmaps with progressively coarser
25  * granularity; in all levels except the last, bit N is set iff the N-th
26  * unsigned long is nonzero in the immediately next level.  When iteration
27  * completes on the last level it can examine the 2nd-last level to quickly
28  * skip entire words, and even do so recursively to skip blocks of 64 words or
29  * powers thereof (32 on 32-bit machines).
30  *
31  * Given an index in the bitmap, it can be split in group of bits like
32  * this (for the 64-bit case):
33  *
34  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
35  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37  *
38  * So it is easy to move up simply by shifting the index right by
39  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
40  * similarly, and add the word index within the group.  Iteration uses
41  * ffs (find first set bit) to find the next word to examine; this
42  * operation can be done in constant time in most current architectures.
43  *
44  * Setting or clearing a range of m bits on all levels, the work to perform
45  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46  *
47  * When iterating on a bitmap, each bit (on any level) is only visited
48  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
49  * the number of bits that are set in all bitmaps.  Unless the bitmap is
50  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51  * cost of advancing from one bit to the next is usually constant (worst case
52  * O(logB n) as in the non-amortized complexity).
53  */
54 
55 struct HBitmap {
56     /* Number of total bits in the bottom level.  */
57     uint64_t size;
58 
59     /* Number of set bits in the bottom level.  */
60     uint64_t count;
61 
62     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
63      * will actually represent a group of 2^G elements.  Each operation on a
64      * range of bits first rounds the bits to determine which group they land
65      * in, and then affect the entire page; iteration will only visit the first
66      * bit of each group.  Here is an example of operations in a size-16,
67      * granularity-1 HBitmap:
68      *
69      *    initial state            00000000
70      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
71      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
72      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
73      *    reset(start=5, count=5)  00000000
74      *
75      * From an implementation point of view, when setting or resetting bits,
76      * the bitmap will scale bit numbers right by this amount of bits.  When
77      * iterating, the bitmap will scale bit numbers left by this amount of
78      * bits.
79      */
80     int granularity;
81 
82     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
83      * coarsest).  Each bit in level N represents a word in level N+1 that
84      * has a set bit, except the last level where each bit represents the
85      * actual bitmap.
86      *
87      * Note that all bitmaps have the same number of levels.  Even a 1-bit
88      * bitmap will still allocate HBITMAP_LEVELS arrays.
89      */
90     unsigned long *levels[HBITMAP_LEVELS];
91 
92     /* The length of each levels[] array. */
93     uint64_t sizes[HBITMAP_LEVELS];
94 };
95 
96 /* Advance hbi to the next nonzero word and return it.  hbi->pos
97  * is updated.  Returns zero if we reach the end of the bitmap.
98  */
99 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
100 {
101     size_t pos = hbi->pos;
102     const HBitmap *hb = hbi->hb;
103     unsigned i = HBITMAP_LEVELS - 1;
104 
105     unsigned long cur;
106     do {
107         cur = hbi->cur[--i];
108         pos >>= BITS_PER_LEVEL;
109     } while (cur == 0);
110 
111     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
112      * bits in the level 0 bitmap; thus we can repurpose the most significant
113      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
114      * that the above loop ends even without an explicit check on i.
115      */
116 
117     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
118         return 0;
119     }
120     for (; i < HBITMAP_LEVELS - 1; i++) {
121         /* Shift back pos to the left, matching the right shifts above.
122          * The index of this word's least significant set bit provides
123          * the low-order bits.
124          */
125         assert(cur);
126         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
127         hbi->cur[i] = cur & (cur - 1);
128 
129         /* Set up next level for iteration.  */
130         cur = hb->levels[i + 1][pos];
131     }
132 
133     hbi->pos = pos;
134     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
135 
136     assert(cur);
137     return cur;
138 }
139 
140 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
141 {
142     unsigned i, bit;
143     uint64_t pos;
144 
145     hbi->hb = hb;
146     pos = first >> hb->granularity;
147     assert(pos < hb->size);
148     hbi->pos = pos >> BITS_PER_LEVEL;
149     hbi->granularity = hb->granularity;
150 
151     for (i = HBITMAP_LEVELS; i-- > 0; ) {
152         bit = pos & (BITS_PER_LONG - 1);
153         pos >>= BITS_PER_LEVEL;
154 
155         /* Drop bits representing items before first.  */
156         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
157 
158         /* We have already added level i+1, so the lowest set bit has
159          * been processed.  Clear it.
160          */
161         if (i != HBITMAP_LEVELS - 1) {
162             hbi->cur[i] &= ~(1UL << bit);
163         }
164     }
165 }
166 
167 bool hbitmap_empty(const HBitmap *hb)
168 {
169     return hb->count == 0;
170 }
171 
172 int hbitmap_granularity(const HBitmap *hb)
173 {
174     return hb->granularity;
175 }
176 
177 uint64_t hbitmap_count(const HBitmap *hb)
178 {
179     return hb->count << hb->granularity;
180 }
181 
182 /* Count the number of set bits between start and end, not accounting for
183  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
184  */
185 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
186 {
187     HBitmapIter hbi;
188     uint64_t count = 0;
189     uint64_t end = last + 1;
190     unsigned long cur;
191     size_t pos;
192 
193     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
194     for (;;) {
195         pos = hbitmap_iter_next_word(&hbi, &cur);
196         if (pos >= (end >> BITS_PER_LEVEL)) {
197             break;
198         }
199         count += ctpopl(cur);
200     }
201 
202     if (pos == (end >> BITS_PER_LEVEL)) {
203         /* Drop bits representing the END-th and subsequent items.  */
204         int bit = end & (BITS_PER_LONG - 1);
205         cur &= (1UL << bit) - 1;
206         count += ctpopl(cur);
207     }
208 
209     return count;
210 }
211 
212 /* Setting starts at the last layer and propagates up if an element
213  * changes from zero to non-zero.
214  */
215 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
216 {
217     unsigned long mask;
218     bool changed;
219 
220     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
221     assert(start <= last);
222 
223     mask = 2UL << (last & (BITS_PER_LONG - 1));
224     mask -= 1UL << (start & (BITS_PER_LONG - 1));
225     changed = (*elem == 0);
226     *elem |= mask;
227     return changed;
228 }
229 
230 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
231 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
232 {
233     size_t pos = start >> BITS_PER_LEVEL;
234     size_t lastpos = last >> BITS_PER_LEVEL;
235     bool changed = false;
236     size_t i;
237 
238     i = pos;
239     if (i < lastpos) {
240         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
241         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
242         for (;;) {
243             start = next;
244             next += BITS_PER_LONG;
245             if (++i == lastpos) {
246                 break;
247             }
248             changed |= (hb->levels[level][i] == 0);
249             hb->levels[level][i] = ~0UL;
250         }
251     }
252     changed |= hb_set_elem(&hb->levels[level][i], start, last);
253 
254     /* If there was any change in this layer, we may have to update
255      * the one above.
256      */
257     if (level > 0 && changed) {
258         hb_set_between(hb, level - 1, pos, lastpos);
259     }
260 }
261 
262 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
263 {
264     /* Compute range in the last layer.  */
265     uint64_t last = start + count - 1;
266 
267     trace_hbitmap_set(hb, start, count,
268                       start >> hb->granularity, last >> hb->granularity);
269 
270     start >>= hb->granularity;
271     last >>= hb->granularity;
272     count = last - start + 1;
273 
274     hb->count += count - hb_count_between(hb, start, last);
275     hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
276 }
277 
278 /* Resetting works the other way round: propagate up if the new
279  * value is zero.
280  */
281 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
282 {
283     unsigned long mask;
284     bool blanked;
285 
286     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
287     assert(start <= last);
288 
289     mask = 2UL << (last & (BITS_PER_LONG - 1));
290     mask -= 1UL << (start & (BITS_PER_LONG - 1));
291     blanked = *elem != 0 && ((*elem & ~mask) == 0);
292     *elem &= ~mask;
293     return blanked;
294 }
295 
296 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
297 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
298 {
299     size_t pos = start >> BITS_PER_LEVEL;
300     size_t lastpos = last >> BITS_PER_LEVEL;
301     bool changed = false;
302     size_t i;
303 
304     i = pos;
305     if (i < lastpos) {
306         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
307 
308         /* Here we need a more complex test than when setting bits.  Even if
309          * something was changed, we must not blank bits in the upper level
310          * unless the lower-level word became entirely zero.  So, remove pos
311          * from the upper-level range if bits remain set.
312          */
313         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
314             changed = true;
315         } else {
316             pos++;
317         }
318 
319         for (;;) {
320             start = next;
321             next += BITS_PER_LONG;
322             if (++i == lastpos) {
323                 break;
324             }
325             changed |= (hb->levels[level][i] != 0);
326             hb->levels[level][i] = 0UL;
327         }
328     }
329 
330     /* Same as above, this time for lastpos.  */
331     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
332         changed = true;
333     } else {
334         lastpos--;
335     }
336 
337     if (level > 0 && changed) {
338         hb_reset_between(hb, level - 1, pos, lastpos);
339     }
340 }
341 
342 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
343 {
344     /* Compute range in the last layer.  */
345     uint64_t last = start + count - 1;
346 
347     trace_hbitmap_reset(hb, start, count,
348                         start >> hb->granularity, last >> hb->granularity);
349 
350     start >>= hb->granularity;
351     last >>= hb->granularity;
352 
353     hb->count -= hb_count_between(hb, start, last);
354     hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
355 }
356 
357 void hbitmap_reset_all(HBitmap *hb)
358 {
359     unsigned int i;
360 
361     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
362     for (i = HBITMAP_LEVELS; --i >= 1; ) {
363         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
364     }
365 
366     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
367     hb->count = 0;
368 }
369 
370 bool hbitmap_get(const HBitmap *hb, uint64_t item)
371 {
372     /* Compute position and bit in the last layer.  */
373     uint64_t pos = item >> hb->granularity;
374     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
375 
376     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
377 }
378 
379 void hbitmap_free(HBitmap *hb)
380 {
381     unsigned i;
382     for (i = HBITMAP_LEVELS; i-- > 0; ) {
383         g_free(hb->levels[i]);
384     }
385     g_free(hb);
386 }
387 
388 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
389 {
390     HBitmap *hb = g_new0(struct HBitmap, 1);
391     unsigned i;
392 
393     assert(granularity >= 0 && granularity < 64);
394     size = (size + (1ULL << granularity) - 1) >> granularity;
395     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
396 
397     hb->size = size;
398     hb->granularity = granularity;
399     for (i = HBITMAP_LEVELS; i-- > 0; ) {
400         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
401         hb->sizes[i] = size;
402         hb->levels[i] = g_new0(unsigned long, size);
403     }
404 
405     /* We necessarily have free bits in level 0 due to the definition
406      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
407      * hbitmap_iter_skip_words.
408      */
409     assert(size == 1);
410     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
411     return hb;
412 }
413 
414 void hbitmap_truncate(HBitmap *hb, uint64_t size)
415 {
416     bool shrink;
417     unsigned i;
418     uint64_t num_elements = size;
419     uint64_t old;
420 
421     /* Size comes in as logical elements, adjust for granularity. */
422     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
423     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
424     shrink = size < hb->size;
425 
426     /* bit sizes are identical; nothing to do. */
427     if (size == hb->size) {
428         return;
429     }
430 
431     /* If we're losing bits, let's clear those bits before we invalidate all of
432      * our invariants. This helps keep the bitcount consistent, and will prevent
433      * us from carrying around garbage bits beyond the end of the map.
434      */
435     if (shrink) {
436         /* Don't clear partial granularity groups;
437          * start at the first full one. */
438         uint64_t start = QEMU_ALIGN_UP(num_elements, 1 << hb->granularity);
439         uint64_t fix_count = (hb->size << hb->granularity) - start;
440 
441         assert(fix_count);
442         hbitmap_reset(hb, start, fix_count);
443     }
444 
445     hb->size = size;
446     for (i = HBITMAP_LEVELS; i-- > 0; ) {
447         size = MAX(BITS_TO_LONGS(size), 1);
448         if (hb->sizes[i] == size) {
449             break;
450         }
451         old = hb->sizes[i];
452         hb->sizes[i] = size;
453         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
454         if (!shrink) {
455             memset(&hb->levels[i][old], 0x00,
456                    (size - old) * sizeof(*hb->levels[i]));
457         }
458     }
459 }
460 
461 
462 /**
463  * Given HBitmaps A and B, let A := A (BITOR) B.
464  * Bitmap B will not be modified.
465  *
466  * @return true if the merge was successful,
467  *         false if it was not attempted.
468  */
469 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
470 {
471     int i;
472     uint64_t j;
473 
474     if ((a->size != b->size) || (a->granularity != b->granularity)) {
475         return false;
476     }
477 
478     if (hbitmap_count(b) == 0) {
479         return true;
480     }
481 
482     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
483      * It may be possible to improve running times for sparsely populated maps
484      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
485      */
486     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
487         for (j = 0; j < a->sizes[i]; j++) {
488             a->levels[i][j] |= b->levels[i][j];
489         }
490     }
491 
492     return true;
493 }
494