1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* 57 * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate. 58 */ 59 uint64_t orig_size; 60 61 /* Number of total bits in the bottom level. */ 62 uint64_t size; 63 64 /* Number of set bits in the bottom level. */ 65 uint64_t count; 66 67 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 68 * will actually represent a group of 2^G elements. Each operation on a 69 * range of bits first rounds the bits to determine which group they land 70 * in, and then affect the entire page; iteration will only visit the first 71 * bit of each group. Here is an example of operations in a size-16, 72 * granularity-1 HBitmap: 73 * 74 * initial state 00000000 75 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 76 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 77 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 78 * reset(start=5, count=5) 00000000 79 * 80 * From an implementation point of view, when setting or resetting bits, 81 * the bitmap will scale bit numbers right by this amount of bits. When 82 * iterating, the bitmap will scale bit numbers left by this amount of 83 * bits. 84 */ 85 int granularity; 86 87 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 88 HBitmap *meta; 89 90 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 91 * coarsest). Each bit in level N represents a word in level N+1 that 92 * has a set bit, except the last level where each bit represents the 93 * actual bitmap. 94 * 95 * Note that all bitmaps have the same number of levels. Even a 1-bit 96 * bitmap will still allocate HBITMAP_LEVELS arrays. 97 */ 98 unsigned long *levels[HBITMAP_LEVELS]; 99 100 /* The length of each levels[] array. */ 101 uint64_t sizes[HBITMAP_LEVELS]; 102 }; 103 104 /* Advance hbi to the next nonzero word and return it. hbi->pos 105 * is updated. Returns zero if we reach the end of the bitmap. 106 */ 107 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 108 { 109 size_t pos = hbi->pos; 110 const HBitmap *hb = hbi->hb; 111 unsigned i = HBITMAP_LEVELS - 1; 112 113 unsigned long cur; 114 do { 115 i--; 116 pos >>= BITS_PER_LEVEL; 117 cur = hbi->cur[i] & hb->levels[i][pos]; 118 } while (cur == 0); 119 120 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 121 * bits in the level 0 bitmap; thus we can repurpose the most significant 122 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 123 * that the above loop ends even without an explicit check on i. 124 */ 125 126 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 127 return 0; 128 } 129 for (; i < HBITMAP_LEVELS - 1; i++) { 130 /* Shift back pos to the left, matching the right shifts above. 131 * The index of this word's least significant set bit provides 132 * the low-order bits. 133 */ 134 assert(cur); 135 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 136 hbi->cur[i] = cur & (cur - 1); 137 138 /* Set up next level for iteration. */ 139 cur = hb->levels[i + 1][pos]; 140 } 141 142 hbi->pos = pos; 143 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 144 145 assert(cur); 146 return cur; 147 } 148 149 int64_t hbitmap_iter_next(HBitmapIter *hbi) 150 { 151 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 152 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 153 int64_t item; 154 155 if (cur == 0) { 156 cur = hbitmap_iter_skip_words(hbi); 157 if (cur == 0) { 158 return -1; 159 } 160 } 161 162 /* The next call will resume work from the next bit. */ 163 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 164 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 165 166 return item << hbi->granularity; 167 } 168 169 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 170 { 171 unsigned i, bit; 172 uint64_t pos; 173 174 hbi->hb = hb; 175 pos = first >> hb->granularity; 176 assert(pos < hb->size); 177 hbi->pos = pos >> BITS_PER_LEVEL; 178 hbi->granularity = hb->granularity; 179 180 for (i = HBITMAP_LEVELS; i-- > 0; ) { 181 bit = pos & (BITS_PER_LONG - 1); 182 pos >>= BITS_PER_LEVEL; 183 184 /* Drop bits representing items before first. */ 185 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 186 187 /* We have already added level i+1, so the lowest set bit has 188 * been processed. Clear it. 189 */ 190 if (i != HBITMAP_LEVELS - 1) { 191 hbi->cur[i] &= ~(1UL << bit); 192 } 193 } 194 } 195 196 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count) 197 { 198 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 199 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 200 unsigned long cur = last_lev[pos]; 201 unsigned start_bit_offset; 202 uint64_t end_bit, sz; 203 int64_t res; 204 205 if (start >= hb->orig_size || count == 0) { 206 return -1; 207 } 208 209 end_bit = count > hb->orig_size - start ? 210 hb->size : 211 ((start + count - 1) >> hb->granularity) + 1; 212 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL; 213 214 /* There may be some zero bits in @cur before @start. We are not interested 215 * in them, let's set them. 216 */ 217 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1); 218 cur |= (1UL << start_bit_offset) - 1; 219 assert((start >> hb->granularity) < hb->size); 220 221 if (cur == (unsigned long)-1) { 222 do { 223 pos++; 224 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 225 226 if (pos >= sz) { 227 return -1; 228 } 229 230 cur = last_lev[pos]; 231 } 232 233 res = (pos << BITS_PER_LEVEL) + ctol(cur); 234 if (res >= end_bit) { 235 return -1; 236 } 237 238 res = res << hb->granularity; 239 if (res < start) { 240 assert(((start - res) >> hb->granularity) == 0); 241 return start; 242 } 243 244 return res; 245 } 246 247 bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start, 248 uint64_t *count) 249 { 250 HBitmapIter hbi; 251 int64_t firt_dirty_off, area_end; 252 uint32_t granularity = 1UL << hb->granularity; 253 uint64_t end; 254 255 if (*start >= hb->orig_size || *count == 0) { 256 return false; 257 } 258 259 end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count; 260 261 hbitmap_iter_init(&hbi, hb, *start); 262 firt_dirty_off = hbitmap_iter_next(&hbi); 263 264 if (firt_dirty_off < 0 || firt_dirty_off >= end) { 265 return false; 266 } 267 268 if (firt_dirty_off + granularity >= end) { 269 area_end = end; 270 } else { 271 area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity, 272 end - firt_dirty_off - granularity); 273 if (area_end < 0) { 274 area_end = end; 275 } 276 } 277 278 if (firt_dirty_off > *start) { 279 *start = firt_dirty_off; 280 } 281 *count = area_end - *start; 282 283 return true; 284 } 285 286 bool hbitmap_empty(const HBitmap *hb) 287 { 288 return hb->count == 0; 289 } 290 291 int hbitmap_granularity(const HBitmap *hb) 292 { 293 return hb->granularity; 294 } 295 296 uint64_t hbitmap_count(const HBitmap *hb) 297 { 298 return hb->count << hb->granularity; 299 } 300 301 /* Count the number of set bits between start and end, not accounting for 302 * the granularity. Also an example of how to use hbitmap_iter_next_word. 303 */ 304 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 305 { 306 HBitmapIter hbi; 307 uint64_t count = 0; 308 uint64_t end = last + 1; 309 unsigned long cur; 310 size_t pos; 311 312 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 313 for (;;) { 314 pos = hbitmap_iter_next_word(&hbi, &cur); 315 if (pos >= (end >> BITS_PER_LEVEL)) { 316 break; 317 } 318 count += ctpopl(cur); 319 } 320 321 if (pos == (end >> BITS_PER_LEVEL)) { 322 /* Drop bits representing the END-th and subsequent items. */ 323 int bit = end & (BITS_PER_LONG - 1); 324 cur &= (1UL << bit) - 1; 325 count += ctpopl(cur); 326 } 327 328 return count; 329 } 330 331 /* Setting starts at the last layer and propagates up if an element 332 * changes. 333 */ 334 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 335 { 336 unsigned long mask; 337 unsigned long old; 338 339 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 340 assert(start <= last); 341 342 mask = 2UL << (last & (BITS_PER_LONG - 1)); 343 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 344 old = *elem; 345 *elem |= mask; 346 return old != *elem; 347 } 348 349 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 350 * Returns true if at least one bit is changed. */ 351 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 352 uint64_t last) 353 { 354 size_t pos = start >> BITS_PER_LEVEL; 355 size_t lastpos = last >> BITS_PER_LEVEL; 356 bool changed = false; 357 size_t i; 358 359 i = pos; 360 if (i < lastpos) { 361 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 362 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 363 for (;;) { 364 start = next; 365 next += BITS_PER_LONG; 366 if (++i == lastpos) { 367 break; 368 } 369 changed |= (hb->levels[level][i] == 0); 370 hb->levels[level][i] = ~0UL; 371 } 372 } 373 changed |= hb_set_elem(&hb->levels[level][i], start, last); 374 375 /* If there was any change in this layer, we may have to update 376 * the one above. 377 */ 378 if (level > 0 && changed) { 379 hb_set_between(hb, level - 1, pos, lastpos); 380 } 381 return changed; 382 } 383 384 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 385 { 386 /* Compute range in the last layer. */ 387 uint64_t first, n; 388 uint64_t last = start + count - 1; 389 390 trace_hbitmap_set(hb, start, count, 391 start >> hb->granularity, last >> hb->granularity); 392 393 first = start >> hb->granularity; 394 last >>= hb->granularity; 395 assert(last < hb->size); 396 n = last - first + 1; 397 398 hb->count += n - hb_count_between(hb, first, last); 399 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 400 hb->meta) { 401 hbitmap_set(hb->meta, start, count); 402 } 403 } 404 405 /* Resetting works the other way round: propagate up if the new 406 * value is zero. 407 */ 408 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 409 { 410 unsigned long mask; 411 bool blanked; 412 413 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 414 assert(start <= last); 415 416 mask = 2UL << (last & (BITS_PER_LONG - 1)); 417 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 418 blanked = *elem != 0 && ((*elem & ~mask) == 0); 419 *elem &= ~mask; 420 return blanked; 421 } 422 423 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 424 * Returns true if at least one bit is changed. */ 425 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 426 uint64_t last) 427 { 428 size_t pos = start >> BITS_PER_LEVEL; 429 size_t lastpos = last >> BITS_PER_LEVEL; 430 bool changed = false; 431 size_t i; 432 433 i = pos; 434 if (i < lastpos) { 435 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 436 437 /* Here we need a more complex test than when setting bits. Even if 438 * something was changed, we must not blank bits in the upper level 439 * unless the lower-level word became entirely zero. So, remove pos 440 * from the upper-level range if bits remain set. 441 */ 442 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 443 changed = true; 444 } else { 445 pos++; 446 } 447 448 for (;;) { 449 start = next; 450 next += BITS_PER_LONG; 451 if (++i == lastpos) { 452 break; 453 } 454 changed |= (hb->levels[level][i] != 0); 455 hb->levels[level][i] = 0UL; 456 } 457 } 458 459 /* Same as above, this time for lastpos. */ 460 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 461 changed = true; 462 } else { 463 lastpos--; 464 } 465 466 if (level > 0 && changed) { 467 hb_reset_between(hb, level - 1, pos, lastpos); 468 } 469 470 return changed; 471 472 } 473 474 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 475 { 476 /* Compute range in the last layer. */ 477 uint64_t first; 478 uint64_t last = start + count - 1; 479 480 trace_hbitmap_reset(hb, start, count, 481 start >> hb->granularity, last >> hb->granularity); 482 483 first = start >> hb->granularity; 484 last >>= hb->granularity; 485 assert(last < hb->size); 486 487 hb->count -= hb_count_between(hb, first, last); 488 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 489 hb->meta) { 490 hbitmap_set(hb->meta, start, count); 491 } 492 } 493 494 void hbitmap_reset_all(HBitmap *hb) 495 { 496 unsigned int i; 497 498 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 499 for (i = HBITMAP_LEVELS; --i >= 1; ) { 500 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 501 } 502 503 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 504 hb->count = 0; 505 } 506 507 bool hbitmap_is_serializable(const HBitmap *hb) 508 { 509 /* Every serialized chunk must be aligned to 64 bits so that endianness 510 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 511 * We have hbitmap_serialization_align() which converts this 512 * alignment requirement from bitmap bits to items covered (e.g. sectors). 513 * That value is: 514 * 64 << hb->granularity 515 * Since this value must not exceed UINT64_MAX, hb->granularity must be 516 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 517 * 518 * In order for hbitmap_serialization_align() to always return a 519 * meaningful value, bitmaps that are to be serialized must have a 520 * granularity of less than 58. */ 521 522 return hb->granularity < 58; 523 } 524 525 bool hbitmap_get(const HBitmap *hb, uint64_t item) 526 { 527 /* Compute position and bit in the last layer. */ 528 uint64_t pos = item >> hb->granularity; 529 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 530 assert(pos < hb->size); 531 532 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 533 } 534 535 uint64_t hbitmap_serialization_align(const HBitmap *hb) 536 { 537 assert(hbitmap_is_serializable(hb)); 538 539 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 540 * hosts. */ 541 return UINT64_C(64) << hb->granularity; 542 } 543 544 /* Start should be aligned to serialization granularity, chunk size should be 545 * aligned to serialization granularity too, except for last chunk. 546 */ 547 static void serialization_chunk(const HBitmap *hb, 548 uint64_t start, uint64_t count, 549 unsigned long **first_el, uint64_t *el_count) 550 { 551 uint64_t last = start + count - 1; 552 uint64_t gran = hbitmap_serialization_align(hb); 553 554 assert((start & (gran - 1)) == 0); 555 assert((last >> hb->granularity) < hb->size); 556 if ((last >> hb->granularity) != hb->size - 1) { 557 assert((count & (gran - 1)) == 0); 558 } 559 560 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 561 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 562 563 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 564 *el_count = last - start + 1; 565 } 566 567 uint64_t hbitmap_serialization_size(const HBitmap *hb, 568 uint64_t start, uint64_t count) 569 { 570 uint64_t el_count; 571 unsigned long *cur; 572 573 if (!count) { 574 return 0; 575 } 576 serialization_chunk(hb, start, count, &cur, &el_count); 577 578 return el_count * sizeof(unsigned long); 579 } 580 581 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 582 uint64_t start, uint64_t count) 583 { 584 uint64_t el_count; 585 unsigned long *cur, *end; 586 587 if (!count) { 588 return; 589 } 590 serialization_chunk(hb, start, count, &cur, &el_count); 591 end = cur + el_count; 592 593 while (cur != end) { 594 unsigned long el = 595 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 596 597 memcpy(buf, &el, sizeof(el)); 598 buf += sizeof(el); 599 cur++; 600 } 601 } 602 603 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 604 uint64_t start, uint64_t count, 605 bool finish) 606 { 607 uint64_t el_count; 608 unsigned long *cur, *end; 609 610 if (!count) { 611 return; 612 } 613 serialization_chunk(hb, start, count, &cur, &el_count); 614 end = cur + el_count; 615 616 while (cur != end) { 617 memcpy(cur, buf, sizeof(*cur)); 618 619 if (BITS_PER_LONG == 32) { 620 le32_to_cpus((uint32_t *)cur); 621 } else { 622 le64_to_cpus((uint64_t *)cur); 623 } 624 625 buf += sizeof(unsigned long); 626 cur++; 627 } 628 if (finish) { 629 hbitmap_deserialize_finish(hb); 630 } 631 } 632 633 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 634 bool finish) 635 { 636 uint64_t el_count; 637 unsigned long *first; 638 639 if (!count) { 640 return; 641 } 642 serialization_chunk(hb, start, count, &first, &el_count); 643 644 memset(first, 0, el_count * sizeof(unsigned long)); 645 if (finish) { 646 hbitmap_deserialize_finish(hb); 647 } 648 } 649 650 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 651 bool finish) 652 { 653 uint64_t el_count; 654 unsigned long *first; 655 656 if (!count) { 657 return; 658 } 659 serialization_chunk(hb, start, count, &first, &el_count); 660 661 memset(first, 0xff, el_count * sizeof(unsigned long)); 662 if (finish) { 663 hbitmap_deserialize_finish(hb); 664 } 665 } 666 667 void hbitmap_deserialize_finish(HBitmap *bitmap) 668 { 669 int64_t i, size, prev_size; 670 int lev; 671 672 /* restore levels starting from penultimate to zero level, assuming 673 * that the last level is ok */ 674 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 675 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 676 prev_size = size; 677 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 678 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 679 680 for (i = 0; i < prev_size; ++i) { 681 if (bitmap->levels[lev + 1][i]) { 682 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 683 1UL << (i & (BITS_PER_LONG - 1)); 684 } 685 } 686 } 687 688 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 689 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 690 } 691 692 void hbitmap_free(HBitmap *hb) 693 { 694 unsigned i; 695 assert(!hb->meta); 696 for (i = HBITMAP_LEVELS; i-- > 0; ) { 697 g_free(hb->levels[i]); 698 } 699 g_free(hb); 700 } 701 702 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 703 { 704 HBitmap *hb = g_new0(struct HBitmap, 1); 705 unsigned i; 706 707 hb->orig_size = size; 708 709 assert(granularity >= 0 && granularity < 64); 710 size = (size + (1ULL << granularity) - 1) >> granularity; 711 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 712 713 hb->size = size; 714 hb->granularity = granularity; 715 for (i = HBITMAP_LEVELS; i-- > 0; ) { 716 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 717 hb->sizes[i] = size; 718 hb->levels[i] = g_new0(unsigned long, size); 719 } 720 721 /* We necessarily have free bits in level 0 due to the definition 722 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 723 * hbitmap_iter_skip_words. 724 */ 725 assert(size == 1); 726 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 727 return hb; 728 } 729 730 void hbitmap_truncate(HBitmap *hb, uint64_t size) 731 { 732 bool shrink; 733 unsigned i; 734 uint64_t num_elements = size; 735 uint64_t old; 736 737 hb->orig_size = size; 738 739 /* Size comes in as logical elements, adjust for granularity. */ 740 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 741 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 742 shrink = size < hb->size; 743 744 /* bit sizes are identical; nothing to do. */ 745 if (size == hb->size) { 746 return; 747 } 748 749 /* If we're losing bits, let's clear those bits before we invalidate all of 750 * our invariants. This helps keep the bitcount consistent, and will prevent 751 * us from carrying around garbage bits beyond the end of the map. 752 */ 753 if (shrink) { 754 /* Don't clear partial granularity groups; 755 * start at the first full one. */ 756 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 757 uint64_t fix_count = (hb->size << hb->granularity) - start; 758 759 assert(fix_count); 760 hbitmap_reset(hb, start, fix_count); 761 } 762 763 hb->size = size; 764 for (i = HBITMAP_LEVELS; i-- > 0; ) { 765 size = MAX(BITS_TO_LONGS(size), 1); 766 if (hb->sizes[i] == size) { 767 break; 768 } 769 old = hb->sizes[i]; 770 hb->sizes[i] = size; 771 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 772 if (!shrink) { 773 memset(&hb->levels[i][old], 0x00, 774 (size - old) * sizeof(*hb->levels[i])); 775 } 776 } 777 if (hb->meta) { 778 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 779 } 780 } 781 782 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b) 783 { 784 return (a->orig_size == b->orig_size); 785 } 786 787 /** 788 * hbitmap_sparse_merge: performs dst = dst | src 789 * works with differing granularities. 790 * best used when src is sparsely populated. 791 */ 792 static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src) 793 { 794 uint64_t offset = 0; 795 uint64_t count = src->orig_size; 796 797 while (hbitmap_next_dirty_area(src, &offset, &count)) { 798 hbitmap_set(dst, offset, count); 799 offset += count; 800 if (offset >= src->orig_size) { 801 break; 802 } 803 count = src->orig_size - offset; 804 } 805 } 806 807 /** 808 * Given HBitmaps A and B, let R := A (BITOR) B. 809 * Bitmaps A and B will not be modified, 810 * except when bitmap R is an alias of A or B. 811 * 812 * @return true if the merge was successful, 813 * false if it was not attempted. 814 */ 815 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result) 816 { 817 int i; 818 uint64_t j; 819 820 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) { 821 return false; 822 } 823 assert(hbitmap_can_merge(b, result)); 824 825 if ((!hbitmap_count(a) && result == b) || 826 (!hbitmap_count(b) && result == a)) { 827 return true; 828 } 829 830 if (!hbitmap_count(a) && !hbitmap_count(b)) { 831 hbitmap_reset_all(result); 832 return true; 833 } 834 835 if (a->granularity != b->granularity) { 836 if ((a != result) && (b != result)) { 837 hbitmap_reset_all(result); 838 } 839 if (a != result) { 840 hbitmap_sparse_merge(result, a); 841 } 842 if (b != result) { 843 hbitmap_sparse_merge(result, b); 844 } 845 return true; 846 } 847 848 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 849 * It may be possible to improve running times for sparsely populated maps 850 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 851 */ 852 assert(a->size == b->size); 853 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 854 for (j = 0; j < a->sizes[i]; j++) { 855 result->levels[i][j] = a->levels[i][j] | b->levels[i][j]; 856 } 857 } 858 859 /* Recompute the dirty count */ 860 result->count = hb_count_between(result, 0, result->size - 1); 861 862 return true; 863 } 864 865 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 866 { 867 assert(!(chunk_size & (chunk_size - 1))); 868 assert(!hb->meta); 869 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 870 hb->granularity + ctz32(chunk_size)); 871 return hb->meta; 872 } 873 874 void hbitmap_free_meta(HBitmap *hb) 875 { 876 assert(hb->meta); 877 hbitmap_free(hb->meta); 878 hb->meta = NULL; 879 } 880 881 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 882 { 883 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 884 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 885 char *hash = NULL; 886 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 887 888 return hash; 889 } 890