1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* 57 * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate. 58 */ 59 uint64_t orig_size; 60 61 /* Number of total bits in the bottom level. */ 62 uint64_t size; 63 64 /* Number of set bits in the bottom level. */ 65 uint64_t count; 66 67 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 68 * will actually represent a group of 2^G elements. Each operation on a 69 * range of bits first rounds the bits to determine which group they land 70 * in, and then affect the entire page; iteration will only visit the first 71 * bit of each group. Here is an example of operations in a size-16, 72 * granularity-1 HBitmap: 73 * 74 * initial state 00000000 75 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 76 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 77 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 78 * reset(start=5, count=5) 00000000 79 * 80 * From an implementation point of view, when setting or resetting bits, 81 * the bitmap will scale bit numbers right by this amount of bits. When 82 * iterating, the bitmap will scale bit numbers left by this amount of 83 * bits. 84 */ 85 int granularity; 86 87 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 88 HBitmap *meta; 89 90 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 91 * coarsest). Each bit in level N represents a word in level N+1 that 92 * has a set bit, except the last level where each bit represents the 93 * actual bitmap. 94 * 95 * Note that all bitmaps have the same number of levels. Even a 1-bit 96 * bitmap will still allocate HBITMAP_LEVELS arrays. 97 */ 98 unsigned long *levels[HBITMAP_LEVELS]; 99 100 /* The length of each levels[] array. */ 101 uint64_t sizes[HBITMAP_LEVELS]; 102 }; 103 104 /* Advance hbi to the next nonzero word and return it. hbi->pos 105 * is updated. Returns zero if we reach the end of the bitmap. 106 */ 107 static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 108 { 109 size_t pos = hbi->pos; 110 const HBitmap *hb = hbi->hb; 111 unsigned i = HBITMAP_LEVELS - 1; 112 113 unsigned long cur; 114 do { 115 i--; 116 pos >>= BITS_PER_LEVEL; 117 cur = hbi->cur[i] & hb->levels[i][pos]; 118 } while (cur == 0); 119 120 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 121 * bits in the level 0 bitmap; thus we can repurpose the most significant 122 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 123 * that the above loop ends even without an explicit check on i. 124 */ 125 126 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 127 return 0; 128 } 129 for (; i < HBITMAP_LEVELS - 1; i++) { 130 /* Shift back pos to the left, matching the right shifts above. 131 * The index of this word's least significant set bit provides 132 * the low-order bits. 133 */ 134 assert(cur); 135 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 136 hbi->cur[i] = cur & (cur - 1); 137 138 /* Set up next level for iteration. */ 139 cur = hb->levels[i + 1][pos]; 140 } 141 142 hbi->pos = pos; 143 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 144 145 assert(cur); 146 return cur; 147 } 148 149 int64_t hbitmap_iter_next(HBitmapIter *hbi) 150 { 151 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 152 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 153 int64_t item; 154 155 if (cur == 0) { 156 cur = hbitmap_iter_skip_words(hbi); 157 if (cur == 0) { 158 return -1; 159 } 160 } 161 162 /* The next call will resume work from the next bit. */ 163 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 164 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 165 166 return item << hbi->granularity; 167 } 168 169 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 170 { 171 unsigned i, bit; 172 uint64_t pos; 173 174 hbi->hb = hb; 175 pos = first >> hb->granularity; 176 assert(pos < hb->size); 177 hbi->pos = pos >> BITS_PER_LEVEL; 178 hbi->granularity = hb->granularity; 179 180 for (i = HBITMAP_LEVELS; i-- > 0; ) { 181 bit = pos & (BITS_PER_LONG - 1); 182 pos >>= BITS_PER_LEVEL; 183 184 /* Drop bits representing items before first. */ 185 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 186 187 /* We have already added level i+1, so the lowest set bit has 188 * been processed. Clear it. 189 */ 190 if (i != HBITMAP_LEVELS - 1) { 191 hbi->cur[i] &= ~(1UL << bit); 192 } 193 } 194 } 195 196 int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count) 197 { 198 HBitmapIter hbi; 199 int64_t first_dirty_off; 200 uint64_t end; 201 202 assert(start >= 0 && count >= 0); 203 204 if (start >= hb->orig_size || count == 0) { 205 return -1; 206 } 207 208 end = count > hb->orig_size - start ? hb->orig_size : start + count; 209 210 hbitmap_iter_init(&hbi, hb, start); 211 first_dirty_off = hbitmap_iter_next(&hbi); 212 213 if (first_dirty_off < 0 || first_dirty_off >= end) { 214 return -1; 215 } 216 217 return MAX(start, first_dirty_off); 218 } 219 220 int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count) 221 { 222 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 223 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 224 unsigned long cur = last_lev[pos]; 225 unsigned start_bit_offset; 226 uint64_t end_bit, sz; 227 int64_t res; 228 229 assert(start >= 0 && count >= 0); 230 231 if (start >= hb->orig_size || count == 0) { 232 return -1; 233 } 234 235 end_bit = count > hb->orig_size - start ? 236 hb->size : 237 ((start + count - 1) >> hb->granularity) + 1; 238 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL; 239 240 /* There may be some zero bits in @cur before @start. We are not interested 241 * in them, let's set them. 242 */ 243 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1); 244 cur |= (1UL << start_bit_offset) - 1; 245 assert((start >> hb->granularity) < hb->size); 246 247 if (cur == (unsigned long)-1) { 248 do { 249 pos++; 250 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 251 252 if (pos >= sz) { 253 return -1; 254 } 255 256 cur = last_lev[pos]; 257 } 258 259 res = (pos << BITS_PER_LEVEL) + ctol(cur); 260 if (res >= end_bit) { 261 return -1; 262 } 263 264 res = res << hb->granularity; 265 if (res < start) { 266 assert(((start - res) >> hb->granularity) == 0); 267 return start; 268 } 269 270 return res; 271 } 272 273 bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end, 274 int64_t max_dirty_count, 275 int64_t *dirty_start, int64_t *dirty_count) 276 { 277 int64_t next_zero; 278 279 assert(start >= 0 && end >= 0 && max_dirty_count > 0); 280 281 end = MIN(end, hb->orig_size); 282 if (start >= end) { 283 return false; 284 } 285 286 start = hbitmap_next_dirty(hb, start, end - start); 287 if (start < 0) { 288 return false; 289 } 290 291 end = start + MIN(end - start, max_dirty_count); 292 293 next_zero = hbitmap_next_zero(hb, start, end - start); 294 if (next_zero >= 0) { 295 end = next_zero; 296 } 297 298 *dirty_start = start; 299 *dirty_count = end - start; 300 301 return true; 302 } 303 304 bool hbitmap_empty(const HBitmap *hb) 305 { 306 return hb->count == 0; 307 } 308 309 int hbitmap_granularity(const HBitmap *hb) 310 { 311 return hb->granularity; 312 } 313 314 uint64_t hbitmap_count(const HBitmap *hb) 315 { 316 return hb->count << hb->granularity; 317 } 318 319 /** 320 * hbitmap_iter_next_word: 321 * @hbi: HBitmapIter to operate on. 322 * @p_cur: Location where to store the next non-zero word. 323 * 324 * Return the index of the next nonzero word that is set in @hbi's 325 * associated HBitmap, and set *p_cur to the content of that word 326 * (bits before the index that was passed to hbitmap_iter_init are 327 * trimmed on the first call). Return -1, and set *p_cur to zero, 328 * if all remaining words are zero. 329 */ 330 static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur) 331 { 332 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1]; 333 334 if (cur == 0) { 335 cur = hbitmap_iter_skip_words(hbi); 336 if (cur == 0) { 337 *p_cur = 0; 338 return -1; 339 } 340 } 341 342 /* The next call will resume work from the next word. */ 343 hbi->cur[HBITMAP_LEVELS - 1] = 0; 344 *p_cur = cur; 345 return hbi->pos; 346 } 347 348 /* Count the number of set bits between start and end, not accounting for 349 * the granularity. Also an example of how to use hbitmap_iter_next_word. 350 */ 351 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 352 { 353 HBitmapIter hbi; 354 uint64_t count = 0; 355 uint64_t end = last + 1; 356 unsigned long cur; 357 size_t pos; 358 359 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 360 for (;;) { 361 pos = hbitmap_iter_next_word(&hbi, &cur); 362 if (pos >= (end >> BITS_PER_LEVEL)) { 363 break; 364 } 365 count += ctpopl(cur); 366 } 367 368 if (pos == (end >> BITS_PER_LEVEL)) { 369 /* Drop bits representing the END-th and subsequent items. */ 370 int bit = end & (BITS_PER_LONG - 1); 371 cur &= (1UL << bit) - 1; 372 count += ctpopl(cur); 373 } 374 375 return count; 376 } 377 378 /* Setting starts at the last layer and propagates up if an element 379 * changes. 380 */ 381 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 382 { 383 unsigned long mask; 384 unsigned long old; 385 386 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 387 assert(start <= last); 388 389 mask = 2UL << (last & (BITS_PER_LONG - 1)); 390 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 391 old = *elem; 392 *elem |= mask; 393 return old != *elem; 394 } 395 396 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 397 * Returns true if at least one bit is changed. */ 398 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 399 uint64_t last) 400 { 401 size_t pos = start >> BITS_PER_LEVEL; 402 size_t lastpos = last >> BITS_PER_LEVEL; 403 bool changed = false; 404 size_t i; 405 406 i = pos; 407 if (i < lastpos) { 408 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 409 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 410 for (;;) { 411 start = next; 412 next += BITS_PER_LONG; 413 if (++i == lastpos) { 414 break; 415 } 416 changed |= (hb->levels[level][i] == 0); 417 hb->levels[level][i] = ~0UL; 418 } 419 } 420 changed |= hb_set_elem(&hb->levels[level][i], start, last); 421 422 /* If there was any change in this layer, we may have to update 423 * the one above. 424 */ 425 if (level > 0 && changed) { 426 hb_set_between(hb, level - 1, pos, lastpos); 427 } 428 return changed; 429 } 430 431 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 432 { 433 /* Compute range in the last layer. */ 434 uint64_t first, n; 435 uint64_t last = start + count - 1; 436 437 if (count == 0) { 438 return; 439 } 440 441 trace_hbitmap_set(hb, start, count, 442 start >> hb->granularity, last >> hb->granularity); 443 444 first = start >> hb->granularity; 445 last >>= hb->granularity; 446 assert(last < hb->size); 447 n = last - first + 1; 448 449 hb->count += n - hb_count_between(hb, first, last); 450 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 451 hb->meta) { 452 hbitmap_set(hb->meta, start, count); 453 } 454 } 455 456 /* Resetting works the other way round: propagate up if the new 457 * value is zero. 458 */ 459 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 460 { 461 unsigned long mask; 462 bool blanked; 463 464 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 465 assert(start <= last); 466 467 mask = 2UL << (last & (BITS_PER_LONG - 1)); 468 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 469 blanked = *elem != 0 && ((*elem & ~mask) == 0); 470 *elem &= ~mask; 471 return blanked; 472 } 473 474 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 475 * Returns true if at least one bit is changed. */ 476 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 477 uint64_t last) 478 { 479 size_t pos = start >> BITS_PER_LEVEL; 480 size_t lastpos = last >> BITS_PER_LEVEL; 481 bool changed = false; 482 size_t i; 483 484 i = pos; 485 if (i < lastpos) { 486 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 487 488 /* Here we need a more complex test than when setting bits. Even if 489 * something was changed, we must not blank bits in the upper level 490 * unless the lower-level word became entirely zero. So, remove pos 491 * from the upper-level range if bits remain set. 492 */ 493 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 494 changed = true; 495 } else { 496 pos++; 497 } 498 499 for (;;) { 500 start = next; 501 next += BITS_PER_LONG; 502 if (++i == lastpos) { 503 break; 504 } 505 changed |= (hb->levels[level][i] != 0); 506 hb->levels[level][i] = 0UL; 507 } 508 } 509 510 /* Same as above, this time for lastpos. */ 511 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 512 changed = true; 513 } else { 514 lastpos--; 515 } 516 517 if (level > 0 && changed) { 518 hb_reset_between(hb, level - 1, pos, lastpos); 519 } 520 521 return changed; 522 523 } 524 525 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 526 { 527 /* Compute range in the last layer. */ 528 uint64_t first; 529 uint64_t last = start + count - 1; 530 uint64_t gran = 1ULL << hb->granularity; 531 532 if (count == 0) { 533 return; 534 } 535 536 assert(QEMU_IS_ALIGNED(start, gran)); 537 assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size)); 538 539 trace_hbitmap_reset(hb, start, count, 540 start >> hb->granularity, last >> hb->granularity); 541 542 first = start >> hb->granularity; 543 last >>= hb->granularity; 544 assert(last < hb->size); 545 546 hb->count -= hb_count_between(hb, first, last); 547 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 548 hb->meta) { 549 hbitmap_set(hb->meta, start, count); 550 } 551 } 552 553 void hbitmap_reset_all(HBitmap *hb) 554 { 555 unsigned int i; 556 557 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 558 for (i = HBITMAP_LEVELS; --i >= 1; ) { 559 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 560 } 561 562 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 563 hb->count = 0; 564 } 565 566 bool hbitmap_is_serializable(const HBitmap *hb) 567 { 568 /* Every serialized chunk must be aligned to 64 bits so that endianness 569 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 570 * We have hbitmap_serialization_align() which converts this 571 * alignment requirement from bitmap bits to items covered (e.g. sectors). 572 * That value is: 573 * 64 << hb->granularity 574 * Since this value must not exceed UINT64_MAX, hb->granularity must be 575 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 576 * 577 * In order for hbitmap_serialization_align() to always return a 578 * meaningful value, bitmaps that are to be serialized must have a 579 * granularity of less than 58. */ 580 581 return hb->granularity < 58; 582 } 583 584 bool hbitmap_get(const HBitmap *hb, uint64_t item) 585 { 586 /* Compute position and bit in the last layer. */ 587 uint64_t pos = item >> hb->granularity; 588 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 589 assert(pos < hb->size); 590 591 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 592 } 593 594 uint64_t hbitmap_serialization_align(const HBitmap *hb) 595 { 596 assert(hbitmap_is_serializable(hb)); 597 598 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 599 * hosts. */ 600 return UINT64_C(64) << hb->granularity; 601 } 602 603 /* Start should be aligned to serialization granularity, chunk size should be 604 * aligned to serialization granularity too, except for last chunk. 605 */ 606 static void serialization_chunk(const HBitmap *hb, 607 uint64_t start, uint64_t count, 608 unsigned long **first_el, uint64_t *el_count) 609 { 610 uint64_t last = start + count - 1; 611 uint64_t gran = hbitmap_serialization_align(hb); 612 613 assert((start & (gran - 1)) == 0); 614 assert((last >> hb->granularity) < hb->size); 615 if ((last >> hb->granularity) != hb->size - 1) { 616 assert((count & (gran - 1)) == 0); 617 } 618 619 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 620 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 621 622 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 623 *el_count = last - start + 1; 624 } 625 626 uint64_t hbitmap_serialization_size(const HBitmap *hb, 627 uint64_t start, uint64_t count) 628 { 629 uint64_t el_count; 630 unsigned long *cur; 631 632 if (!count) { 633 return 0; 634 } 635 serialization_chunk(hb, start, count, &cur, &el_count); 636 637 return el_count * sizeof(unsigned long); 638 } 639 640 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 641 uint64_t start, uint64_t count) 642 { 643 uint64_t el_count; 644 unsigned long *cur, *end; 645 646 if (!count) { 647 return; 648 } 649 serialization_chunk(hb, start, count, &cur, &el_count); 650 end = cur + el_count; 651 652 while (cur != end) { 653 unsigned long el = 654 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 655 656 memcpy(buf, &el, sizeof(el)); 657 buf += sizeof(el); 658 cur++; 659 } 660 } 661 662 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 663 uint64_t start, uint64_t count, 664 bool finish) 665 { 666 uint64_t el_count; 667 unsigned long *cur, *end; 668 669 if (!count) { 670 return; 671 } 672 serialization_chunk(hb, start, count, &cur, &el_count); 673 end = cur + el_count; 674 675 while (cur != end) { 676 memcpy(cur, buf, sizeof(*cur)); 677 678 if (BITS_PER_LONG == 32) { 679 le32_to_cpus((uint32_t *)cur); 680 } else { 681 le64_to_cpus((uint64_t *)cur); 682 } 683 684 buf += sizeof(unsigned long); 685 cur++; 686 } 687 if (finish) { 688 hbitmap_deserialize_finish(hb); 689 } 690 } 691 692 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 693 bool finish) 694 { 695 uint64_t el_count; 696 unsigned long *first; 697 698 if (!count) { 699 return; 700 } 701 serialization_chunk(hb, start, count, &first, &el_count); 702 703 memset(first, 0, el_count * sizeof(unsigned long)); 704 if (finish) { 705 hbitmap_deserialize_finish(hb); 706 } 707 } 708 709 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 710 bool finish) 711 { 712 uint64_t el_count; 713 unsigned long *first; 714 715 if (!count) { 716 return; 717 } 718 serialization_chunk(hb, start, count, &first, &el_count); 719 720 memset(first, 0xff, el_count * sizeof(unsigned long)); 721 if (finish) { 722 hbitmap_deserialize_finish(hb); 723 } 724 } 725 726 void hbitmap_deserialize_finish(HBitmap *bitmap) 727 { 728 int64_t i, size, prev_size; 729 int lev; 730 731 /* restore levels starting from penultimate to zero level, assuming 732 * that the last level is ok */ 733 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 734 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 735 prev_size = size; 736 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 737 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 738 739 for (i = 0; i < prev_size; ++i) { 740 if (bitmap->levels[lev + 1][i]) { 741 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 742 1UL << (i & (BITS_PER_LONG - 1)); 743 } 744 } 745 } 746 747 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 748 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 749 } 750 751 void hbitmap_free(HBitmap *hb) 752 { 753 unsigned i; 754 assert(!hb->meta); 755 for (i = HBITMAP_LEVELS; i-- > 0; ) { 756 g_free(hb->levels[i]); 757 } 758 g_free(hb); 759 } 760 761 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 762 { 763 HBitmap *hb = g_new0(struct HBitmap, 1); 764 unsigned i; 765 766 assert(size <= INT64_MAX); 767 hb->orig_size = size; 768 769 assert(granularity >= 0 && granularity < 64); 770 size = (size + (1ULL << granularity) - 1) >> granularity; 771 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 772 773 hb->size = size; 774 hb->granularity = granularity; 775 for (i = HBITMAP_LEVELS; i-- > 0; ) { 776 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 777 hb->sizes[i] = size; 778 hb->levels[i] = g_new0(unsigned long, size); 779 } 780 781 /* We necessarily have free bits in level 0 due to the definition 782 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 783 * hbitmap_iter_skip_words. 784 */ 785 assert(size == 1); 786 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 787 return hb; 788 } 789 790 void hbitmap_truncate(HBitmap *hb, uint64_t size) 791 { 792 bool shrink; 793 unsigned i; 794 uint64_t num_elements = size; 795 uint64_t old; 796 797 assert(size <= INT64_MAX); 798 hb->orig_size = size; 799 800 /* Size comes in as logical elements, adjust for granularity. */ 801 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 802 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 803 shrink = size < hb->size; 804 805 /* bit sizes are identical; nothing to do. */ 806 if (size == hb->size) { 807 return; 808 } 809 810 /* If we're losing bits, let's clear those bits before we invalidate all of 811 * our invariants. This helps keep the bitcount consistent, and will prevent 812 * us from carrying around garbage bits beyond the end of the map. 813 */ 814 if (shrink) { 815 /* Don't clear partial granularity groups; 816 * start at the first full one. */ 817 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 818 uint64_t fix_count = (hb->size << hb->granularity) - start; 819 820 assert(fix_count); 821 hbitmap_reset(hb, start, fix_count); 822 } 823 824 hb->size = size; 825 for (i = HBITMAP_LEVELS; i-- > 0; ) { 826 size = MAX(BITS_TO_LONGS(size), 1); 827 if (hb->sizes[i] == size) { 828 break; 829 } 830 old = hb->sizes[i]; 831 hb->sizes[i] = size; 832 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 833 if (!shrink) { 834 memset(&hb->levels[i][old], 0x00, 835 (size - old) * sizeof(*hb->levels[i])); 836 } 837 } 838 if (hb->meta) { 839 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 840 } 841 } 842 843 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b) 844 { 845 return (a->orig_size == b->orig_size); 846 } 847 848 /** 849 * hbitmap_sparse_merge: performs dst = dst | src 850 * works with differing granularities. 851 * best used when src is sparsely populated. 852 */ 853 static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src) 854 { 855 int64_t offset; 856 int64_t count; 857 858 for (offset = 0; 859 hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX, 860 &offset, &count); 861 offset += count) 862 { 863 hbitmap_set(dst, offset, count); 864 } 865 } 866 867 /** 868 * Given HBitmaps A and B, let R := A (BITOR) B. 869 * Bitmaps A and B will not be modified, 870 * except when bitmap R is an alias of A or B. 871 * 872 * @return true if the merge was successful, 873 * false if it was not attempted. 874 */ 875 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result) 876 { 877 int i; 878 uint64_t j; 879 880 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) { 881 return false; 882 } 883 assert(hbitmap_can_merge(b, result)); 884 885 if ((!hbitmap_count(a) && result == b) || 886 (!hbitmap_count(b) && result == a)) { 887 return true; 888 } 889 890 if (!hbitmap_count(a) && !hbitmap_count(b)) { 891 hbitmap_reset_all(result); 892 return true; 893 } 894 895 if (a->granularity != b->granularity) { 896 if ((a != result) && (b != result)) { 897 hbitmap_reset_all(result); 898 } 899 if (a != result) { 900 hbitmap_sparse_merge(result, a); 901 } 902 if (b != result) { 903 hbitmap_sparse_merge(result, b); 904 } 905 return true; 906 } 907 908 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 909 * It may be possible to improve running times for sparsely populated maps 910 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 911 */ 912 assert(a->size == b->size); 913 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 914 for (j = 0; j < a->sizes[i]; j++) { 915 result->levels[i][j] = a->levels[i][j] | b->levels[i][j]; 916 } 917 } 918 919 /* Recompute the dirty count */ 920 result->count = hb_count_between(result, 0, result->size - 1); 921 922 return true; 923 } 924 925 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 926 { 927 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 928 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 929 char *hash = NULL; 930 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 931 932 return hash; 933 } 934