1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* 57 * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate. 58 */ 59 uint64_t orig_size; 60 61 /* Number of total bits in the bottom level. */ 62 uint64_t size; 63 64 /* Number of set bits in the bottom level. */ 65 uint64_t count; 66 67 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 68 * will actually represent a group of 2^G elements. Each operation on a 69 * range of bits first rounds the bits to determine which group they land 70 * in, and then affect the entire page; iteration will only visit the first 71 * bit of each group. Here is an example of operations in a size-16, 72 * granularity-1 HBitmap: 73 * 74 * initial state 00000000 75 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 76 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 77 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 78 * reset(start=5, count=5) 00000000 79 * 80 * From an implementation point of view, when setting or resetting bits, 81 * the bitmap will scale bit numbers right by this amount of bits. When 82 * iterating, the bitmap will scale bit numbers left by this amount of 83 * bits. 84 */ 85 int granularity; 86 87 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 88 HBitmap *meta; 89 90 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 91 * coarsest). Each bit in level N represents a word in level N+1 that 92 * has a set bit, except the last level where each bit represents the 93 * actual bitmap. 94 * 95 * Note that all bitmaps have the same number of levels. Even a 1-bit 96 * bitmap will still allocate HBITMAP_LEVELS arrays. 97 */ 98 unsigned long *levels[HBITMAP_LEVELS]; 99 100 /* The length of each levels[] array. */ 101 uint64_t sizes[HBITMAP_LEVELS]; 102 }; 103 104 /* Advance hbi to the next nonzero word and return it. hbi->pos 105 * is updated. Returns zero if we reach the end of the bitmap. 106 */ 107 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 108 { 109 size_t pos = hbi->pos; 110 const HBitmap *hb = hbi->hb; 111 unsigned i = HBITMAP_LEVELS - 1; 112 113 unsigned long cur; 114 do { 115 i--; 116 pos >>= BITS_PER_LEVEL; 117 cur = hbi->cur[i] & hb->levels[i][pos]; 118 } while (cur == 0); 119 120 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 121 * bits in the level 0 bitmap; thus we can repurpose the most significant 122 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 123 * that the above loop ends even without an explicit check on i. 124 */ 125 126 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 127 return 0; 128 } 129 for (; i < HBITMAP_LEVELS - 1; i++) { 130 /* Shift back pos to the left, matching the right shifts above. 131 * The index of this word's least significant set bit provides 132 * the low-order bits. 133 */ 134 assert(cur); 135 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 136 hbi->cur[i] = cur & (cur - 1); 137 138 /* Set up next level for iteration. */ 139 cur = hb->levels[i + 1][pos]; 140 } 141 142 hbi->pos = pos; 143 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 144 145 assert(cur); 146 return cur; 147 } 148 149 int64_t hbitmap_iter_next(HBitmapIter *hbi) 150 { 151 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 152 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 153 int64_t item; 154 155 if (cur == 0) { 156 cur = hbitmap_iter_skip_words(hbi); 157 if (cur == 0) { 158 return -1; 159 } 160 } 161 162 /* The next call will resume work from the next bit. */ 163 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 164 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 165 166 return item << hbi->granularity; 167 } 168 169 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 170 { 171 unsigned i, bit; 172 uint64_t pos; 173 174 hbi->hb = hb; 175 pos = first >> hb->granularity; 176 assert(pos < hb->size); 177 hbi->pos = pos >> BITS_PER_LEVEL; 178 hbi->granularity = hb->granularity; 179 180 for (i = HBITMAP_LEVELS; i-- > 0; ) { 181 bit = pos & (BITS_PER_LONG - 1); 182 pos >>= BITS_PER_LEVEL; 183 184 /* Drop bits representing items before first. */ 185 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 186 187 /* We have already added level i+1, so the lowest set bit has 188 * been processed. Clear it. 189 */ 190 if (i != HBITMAP_LEVELS - 1) { 191 hbi->cur[i] &= ~(1UL << bit); 192 } 193 } 194 } 195 196 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count) 197 { 198 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 199 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 200 unsigned long cur = last_lev[pos]; 201 unsigned start_bit_offset; 202 uint64_t end_bit, sz; 203 int64_t res; 204 205 if (start >= hb->orig_size || count == 0) { 206 return -1; 207 } 208 209 end_bit = count > hb->orig_size - start ? 210 hb->size : 211 ((start + count - 1) >> hb->granularity) + 1; 212 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL; 213 214 /* There may be some zero bits in @cur before @start. We are not interested 215 * in them, let's set them. 216 */ 217 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1); 218 cur |= (1UL << start_bit_offset) - 1; 219 assert((start >> hb->granularity) < hb->size); 220 221 if (cur == (unsigned long)-1) { 222 do { 223 pos++; 224 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 225 226 if (pos >= sz) { 227 return -1; 228 } 229 230 cur = last_lev[pos]; 231 } 232 233 res = (pos << BITS_PER_LEVEL) + ctol(cur); 234 if (res >= end_bit) { 235 return -1; 236 } 237 238 res = res << hb->granularity; 239 if (res < start) { 240 assert(((start - res) >> hb->granularity) == 0); 241 return start; 242 } 243 244 return res; 245 } 246 247 bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start, 248 uint64_t *count) 249 { 250 HBitmapIter hbi; 251 int64_t firt_dirty_off, area_end; 252 uint32_t granularity = 1UL << hb->granularity; 253 uint64_t end; 254 255 if (*start >= hb->orig_size || *count == 0) { 256 return false; 257 } 258 259 end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count; 260 261 hbitmap_iter_init(&hbi, hb, *start); 262 firt_dirty_off = hbitmap_iter_next(&hbi); 263 264 if (firt_dirty_off < 0 || firt_dirty_off >= end) { 265 return false; 266 } 267 268 if (firt_dirty_off + granularity >= end) { 269 area_end = end; 270 } else { 271 area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity, 272 end - firt_dirty_off - granularity); 273 if (area_end < 0) { 274 area_end = end; 275 } 276 } 277 278 if (firt_dirty_off > *start) { 279 *start = firt_dirty_off; 280 } 281 *count = area_end - *start; 282 283 return true; 284 } 285 286 bool hbitmap_empty(const HBitmap *hb) 287 { 288 return hb->count == 0; 289 } 290 291 int hbitmap_granularity(const HBitmap *hb) 292 { 293 return hb->granularity; 294 } 295 296 uint64_t hbitmap_count(const HBitmap *hb) 297 { 298 return hb->count << hb->granularity; 299 } 300 301 /* Count the number of set bits between start and end, not accounting for 302 * the granularity. Also an example of how to use hbitmap_iter_next_word. 303 */ 304 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 305 { 306 HBitmapIter hbi; 307 uint64_t count = 0; 308 uint64_t end = last + 1; 309 unsigned long cur; 310 size_t pos; 311 312 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 313 for (;;) { 314 pos = hbitmap_iter_next_word(&hbi, &cur); 315 if (pos >= (end >> BITS_PER_LEVEL)) { 316 break; 317 } 318 count += ctpopl(cur); 319 } 320 321 if (pos == (end >> BITS_PER_LEVEL)) { 322 /* Drop bits representing the END-th and subsequent items. */ 323 int bit = end & (BITS_PER_LONG - 1); 324 cur &= (1UL << bit) - 1; 325 count += ctpopl(cur); 326 } 327 328 return count; 329 } 330 331 /* Setting starts at the last layer and propagates up if an element 332 * changes. 333 */ 334 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 335 { 336 unsigned long mask; 337 unsigned long old; 338 339 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 340 assert(start <= last); 341 342 mask = 2UL << (last & (BITS_PER_LONG - 1)); 343 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 344 old = *elem; 345 *elem |= mask; 346 return old != *elem; 347 } 348 349 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 350 * Returns true if at least one bit is changed. */ 351 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 352 uint64_t last) 353 { 354 size_t pos = start >> BITS_PER_LEVEL; 355 size_t lastpos = last >> BITS_PER_LEVEL; 356 bool changed = false; 357 size_t i; 358 359 i = pos; 360 if (i < lastpos) { 361 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 362 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 363 for (;;) { 364 start = next; 365 next += BITS_PER_LONG; 366 if (++i == lastpos) { 367 break; 368 } 369 changed |= (hb->levels[level][i] == 0); 370 hb->levels[level][i] = ~0UL; 371 } 372 } 373 changed |= hb_set_elem(&hb->levels[level][i], start, last); 374 375 /* If there was any change in this layer, we may have to update 376 * the one above. 377 */ 378 if (level > 0 && changed) { 379 hb_set_between(hb, level - 1, pos, lastpos); 380 } 381 return changed; 382 } 383 384 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 385 { 386 /* Compute range in the last layer. */ 387 uint64_t first, n; 388 uint64_t last = start + count - 1; 389 390 if (count == 0) { 391 return; 392 } 393 394 trace_hbitmap_set(hb, start, count, 395 start >> hb->granularity, last >> hb->granularity); 396 397 first = start >> hb->granularity; 398 last >>= hb->granularity; 399 assert(last < hb->size); 400 n = last - first + 1; 401 402 hb->count += n - hb_count_between(hb, first, last); 403 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 404 hb->meta) { 405 hbitmap_set(hb->meta, start, count); 406 } 407 } 408 409 /* Resetting works the other way round: propagate up if the new 410 * value is zero. 411 */ 412 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 413 { 414 unsigned long mask; 415 bool blanked; 416 417 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 418 assert(start <= last); 419 420 mask = 2UL << (last & (BITS_PER_LONG - 1)); 421 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 422 blanked = *elem != 0 && ((*elem & ~mask) == 0); 423 *elem &= ~mask; 424 return blanked; 425 } 426 427 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 428 * Returns true if at least one bit is changed. */ 429 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 430 uint64_t last) 431 { 432 size_t pos = start >> BITS_PER_LEVEL; 433 size_t lastpos = last >> BITS_PER_LEVEL; 434 bool changed = false; 435 size_t i; 436 437 i = pos; 438 if (i < lastpos) { 439 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 440 441 /* Here we need a more complex test than when setting bits. Even if 442 * something was changed, we must not blank bits in the upper level 443 * unless the lower-level word became entirely zero. So, remove pos 444 * from the upper-level range if bits remain set. 445 */ 446 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 447 changed = true; 448 } else { 449 pos++; 450 } 451 452 for (;;) { 453 start = next; 454 next += BITS_PER_LONG; 455 if (++i == lastpos) { 456 break; 457 } 458 changed |= (hb->levels[level][i] != 0); 459 hb->levels[level][i] = 0UL; 460 } 461 } 462 463 /* Same as above, this time for lastpos. */ 464 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 465 changed = true; 466 } else { 467 lastpos--; 468 } 469 470 if (level > 0 && changed) { 471 hb_reset_between(hb, level - 1, pos, lastpos); 472 } 473 474 return changed; 475 476 } 477 478 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 479 { 480 /* Compute range in the last layer. */ 481 uint64_t first; 482 uint64_t last = start + count - 1; 483 uint64_t gran = 1ULL << hb->granularity; 484 485 if (count == 0) { 486 return; 487 } 488 489 assert(QEMU_IS_ALIGNED(start, gran)); 490 assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size)); 491 492 trace_hbitmap_reset(hb, start, count, 493 start >> hb->granularity, last >> hb->granularity); 494 495 first = start >> hb->granularity; 496 last >>= hb->granularity; 497 assert(last < hb->size); 498 499 hb->count -= hb_count_between(hb, first, last); 500 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 501 hb->meta) { 502 hbitmap_set(hb->meta, start, count); 503 } 504 } 505 506 void hbitmap_reset_all(HBitmap *hb) 507 { 508 unsigned int i; 509 510 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 511 for (i = HBITMAP_LEVELS; --i >= 1; ) { 512 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 513 } 514 515 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 516 hb->count = 0; 517 } 518 519 bool hbitmap_is_serializable(const HBitmap *hb) 520 { 521 /* Every serialized chunk must be aligned to 64 bits so that endianness 522 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 523 * We have hbitmap_serialization_align() which converts this 524 * alignment requirement from bitmap bits to items covered (e.g. sectors). 525 * That value is: 526 * 64 << hb->granularity 527 * Since this value must not exceed UINT64_MAX, hb->granularity must be 528 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 529 * 530 * In order for hbitmap_serialization_align() to always return a 531 * meaningful value, bitmaps that are to be serialized must have a 532 * granularity of less than 58. */ 533 534 return hb->granularity < 58; 535 } 536 537 bool hbitmap_get(const HBitmap *hb, uint64_t item) 538 { 539 /* Compute position and bit in the last layer. */ 540 uint64_t pos = item >> hb->granularity; 541 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 542 assert(pos < hb->size); 543 544 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 545 } 546 547 uint64_t hbitmap_serialization_align(const HBitmap *hb) 548 { 549 assert(hbitmap_is_serializable(hb)); 550 551 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 552 * hosts. */ 553 return UINT64_C(64) << hb->granularity; 554 } 555 556 /* Start should be aligned to serialization granularity, chunk size should be 557 * aligned to serialization granularity too, except for last chunk. 558 */ 559 static void serialization_chunk(const HBitmap *hb, 560 uint64_t start, uint64_t count, 561 unsigned long **first_el, uint64_t *el_count) 562 { 563 uint64_t last = start + count - 1; 564 uint64_t gran = hbitmap_serialization_align(hb); 565 566 assert((start & (gran - 1)) == 0); 567 assert((last >> hb->granularity) < hb->size); 568 if ((last >> hb->granularity) != hb->size - 1) { 569 assert((count & (gran - 1)) == 0); 570 } 571 572 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 573 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 574 575 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 576 *el_count = last - start + 1; 577 } 578 579 uint64_t hbitmap_serialization_size(const HBitmap *hb, 580 uint64_t start, uint64_t count) 581 { 582 uint64_t el_count; 583 unsigned long *cur; 584 585 if (!count) { 586 return 0; 587 } 588 serialization_chunk(hb, start, count, &cur, &el_count); 589 590 return el_count * sizeof(unsigned long); 591 } 592 593 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 594 uint64_t start, uint64_t count) 595 { 596 uint64_t el_count; 597 unsigned long *cur, *end; 598 599 if (!count) { 600 return; 601 } 602 serialization_chunk(hb, start, count, &cur, &el_count); 603 end = cur + el_count; 604 605 while (cur != end) { 606 unsigned long el = 607 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 608 609 memcpy(buf, &el, sizeof(el)); 610 buf += sizeof(el); 611 cur++; 612 } 613 } 614 615 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 616 uint64_t start, uint64_t count, 617 bool finish) 618 { 619 uint64_t el_count; 620 unsigned long *cur, *end; 621 622 if (!count) { 623 return; 624 } 625 serialization_chunk(hb, start, count, &cur, &el_count); 626 end = cur + el_count; 627 628 while (cur != end) { 629 memcpy(cur, buf, sizeof(*cur)); 630 631 if (BITS_PER_LONG == 32) { 632 le32_to_cpus((uint32_t *)cur); 633 } else { 634 le64_to_cpus((uint64_t *)cur); 635 } 636 637 buf += sizeof(unsigned long); 638 cur++; 639 } 640 if (finish) { 641 hbitmap_deserialize_finish(hb); 642 } 643 } 644 645 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 646 bool finish) 647 { 648 uint64_t el_count; 649 unsigned long *first; 650 651 if (!count) { 652 return; 653 } 654 serialization_chunk(hb, start, count, &first, &el_count); 655 656 memset(first, 0, el_count * sizeof(unsigned long)); 657 if (finish) { 658 hbitmap_deserialize_finish(hb); 659 } 660 } 661 662 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 663 bool finish) 664 { 665 uint64_t el_count; 666 unsigned long *first; 667 668 if (!count) { 669 return; 670 } 671 serialization_chunk(hb, start, count, &first, &el_count); 672 673 memset(first, 0xff, el_count * sizeof(unsigned long)); 674 if (finish) { 675 hbitmap_deserialize_finish(hb); 676 } 677 } 678 679 void hbitmap_deserialize_finish(HBitmap *bitmap) 680 { 681 int64_t i, size, prev_size; 682 int lev; 683 684 /* restore levels starting from penultimate to zero level, assuming 685 * that the last level is ok */ 686 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 687 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 688 prev_size = size; 689 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 690 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 691 692 for (i = 0; i < prev_size; ++i) { 693 if (bitmap->levels[lev + 1][i]) { 694 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 695 1UL << (i & (BITS_PER_LONG - 1)); 696 } 697 } 698 } 699 700 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 701 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 702 } 703 704 void hbitmap_free(HBitmap *hb) 705 { 706 unsigned i; 707 assert(!hb->meta); 708 for (i = HBITMAP_LEVELS; i-- > 0; ) { 709 g_free(hb->levels[i]); 710 } 711 g_free(hb); 712 } 713 714 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 715 { 716 HBitmap *hb = g_new0(struct HBitmap, 1); 717 unsigned i; 718 719 hb->orig_size = size; 720 721 assert(granularity >= 0 && granularity < 64); 722 size = (size + (1ULL << granularity) - 1) >> granularity; 723 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 724 725 hb->size = size; 726 hb->granularity = granularity; 727 for (i = HBITMAP_LEVELS; i-- > 0; ) { 728 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 729 hb->sizes[i] = size; 730 hb->levels[i] = g_new0(unsigned long, size); 731 } 732 733 /* We necessarily have free bits in level 0 due to the definition 734 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 735 * hbitmap_iter_skip_words. 736 */ 737 assert(size == 1); 738 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 739 return hb; 740 } 741 742 void hbitmap_truncate(HBitmap *hb, uint64_t size) 743 { 744 bool shrink; 745 unsigned i; 746 uint64_t num_elements = size; 747 uint64_t old; 748 749 hb->orig_size = size; 750 751 /* Size comes in as logical elements, adjust for granularity. */ 752 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 753 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 754 shrink = size < hb->size; 755 756 /* bit sizes are identical; nothing to do. */ 757 if (size == hb->size) { 758 return; 759 } 760 761 /* If we're losing bits, let's clear those bits before we invalidate all of 762 * our invariants. This helps keep the bitcount consistent, and will prevent 763 * us from carrying around garbage bits beyond the end of the map. 764 */ 765 if (shrink) { 766 /* Don't clear partial granularity groups; 767 * start at the first full one. */ 768 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 769 uint64_t fix_count = (hb->size << hb->granularity) - start; 770 771 assert(fix_count); 772 hbitmap_reset(hb, start, fix_count); 773 } 774 775 hb->size = size; 776 for (i = HBITMAP_LEVELS; i-- > 0; ) { 777 size = MAX(BITS_TO_LONGS(size), 1); 778 if (hb->sizes[i] == size) { 779 break; 780 } 781 old = hb->sizes[i]; 782 hb->sizes[i] = size; 783 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 784 if (!shrink) { 785 memset(&hb->levels[i][old], 0x00, 786 (size - old) * sizeof(*hb->levels[i])); 787 } 788 } 789 if (hb->meta) { 790 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 791 } 792 } 793 794 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b) 795 { 796 return (a->orig_size == b->orig_size); 797 } 798 799 /** 800 * hbitmap_sparse_merge: performs dst = dst | src 801 * works with differing granularities. 802 * best used when src is sparsely populated. 803 */ 804 static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src) 805 { 806 uint64_t offset = 0; 807 uint64_t count = src->orig_size; 808 809 while (hbitmap_next_dirty_area(src, &offset, &count)) { 810 hbitmap_set(dst, offset, count); 811 offset += count; 812 if (offset >= src->orig_size) { 813 break; 814 } 815 count = src->orig_size - offset; 816 } 817 } 818 819 /** 820 * Given HBitmaps A and B, let R := A (BITOR) B. 821 * Bitmaps A and B will not be modified, 822 * except when bitmap R is an alias of A or B. 823 * 824 * @return true if the merge was successful, 825 * false if it was not attempted. 826 */ 827 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result) 828 { 829 int i; 830 uint64_t j; 831 832 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) { 833 return false; 834 } 835 assert(hbitmap_can_merge(b, result)); 836 837 if ((!hbitmap_count(a) && result == b) || 838 (!hbitmap_count(b) && result == a)) { 839 return true; 840 } 841 842 if (!hbitmap_count(a) && !hbitmap_count(b)) { 843 hbitmap_reset_all(result); 844 return true; 845 } 846 847 if (a->granularity != b->granularity) { 848 if ((a != result) && (b != result)) { 849 hbitmap_reset_all(result); 850 } 851 if (a != result) { 852 hbitmap_sparse_merge(result, a); 853 } 854 if (b != result) { 855 hbitmap_sparse_merge(result, b); 856 } 857 return true; 858 } 859 860 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 861 * It may be possible to improve running times for sparsely populated maps 862 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 863 */ 864 assert(a->size == b->size); 865 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 866 for (j = 0; j < a->sizes[i]; j++) { 867 result->levels[i][j] = a->levels[i][j] | b->levels[i][j]; 868 } 869 } 870 871 /* Recompute the dirty count */ 872 result->count = hb_count_between(result, 0, result->size - 1); 873 874 return true; 875 } 876 877 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 878 { 879 assert(!(chunk_size & (chunk_size - 1))); 880 assert(!hb->meta); 881 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 882 hb->granularity + ctz32(chunk_size)); 883 return hb->meta; 884 } 885 886 void hbitmap_free_meta(HBitmap *hb) 887 { 888 assert(hb->meta); 889 hbitmap_free(hb->meta); 890 hb->meta = NULL; 891 } 892 893 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 894 { 895 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 896 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 897 char *hash = NULL; 898 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 899 900 return hash; 901 } 902