xref: /openbmc/qemu/util/hbitmap.c (revision 5c75fb10)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include <string.h>
13 #include <glib.h>
14 #include <assert.h>
15 #include "qemu/osdep.h"
16 #include "qemu/hbitmap.h"
17 #include "qemu/host-utils.h"
18 #include "trace.h"
19 
20 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
21  * array of unsigned longs, but HBitmap is also optimized to provide fast
22  * iteration over set bits; going from one bit to the next is O(logB n)
23  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
24  * that the number of levels is in fact fixed.
25  *
26  * In order to do this, it stacks multiple bitmaps with progressively coarser
27  * granularity; in all levels except the last, bit N is set iff the N-th
28  * unsigned long is nonzero in the immediately next level.  When iteration
29  * completes on the last level it can examine the 2nd-last level to quickly
30  * skip entire words, and even do so recursively to skip blocks of 64 words or
31  * powers thereof (32 on 32-bit machines).
32  *
33  * Given an index in the bitmap, it can be split in group of bits like
34  * this (for the 64-bit case):
35  *
36  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
37  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
38  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
39  *
40  * So it is easy to move up simply by shifting the index right by
41  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
42  * similarly, and add the word index within the group.  Iteration uses
43  * ffs (find first set bit) to find the next word to examine; this
44  * operation can be done in constant time in most current architectures.
45  *
46  * Setting or clearing a range of m bits on all levels, the work to perform
47  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
48  *
49  * When iterating on a bitmap, each bit (on any level) is only visited
50  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
51  * the number of bits that are set in all bitmaps.  Unless the bitmap is
52  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
53  * cost of advancing from one bit to the next is usually constant (worst case
54  * O(logB n) as in the non-amortized complexity).
55  */
56 
57 struct HBitmap {
58     /* Number of total bits in the bottom level.  */
59     uint64_t size;
60 
61     /* Number of set bits in the bottom level.  */
62     uint64_t count;
63 
64     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
65      * will actually represent a group of 2^G elements.  Each operation on a
66      * range of bits first rounds the bits to determine which group they land
67      * in, and then affect the entire page; iteration will only visit the first
68      * bit of each group.  Here is an example of operations in a size-16,
69      * granularity-1 HBitmap:
70      *
71      *    initial state            00000000
72      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
73      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
74      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
75      *    reset(start=5, count=5)  00000000
76      *
77      * From an implementation point of view, when setting or resetting bits,
78      * the bitmap will scale bit numbers right by this amount of bits.  When
79      * iterating, the bitmap will scale bit numbers left by this amount of
80      * bits.
81      */
82     int granularity;
83 
84     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
85      * coarsest).  Each bit in level N represents a word in level N+1 that
86      * has a set bit, except the last level where each bit represents the
87      * actual bitmap.
88      *
89      * Note that all bitmaps have the same number of levels.  Even a 1-bit
90      * bitmap will still allocate HBITMAP_LEVELS arrays.
91      */
92     unsigned long *levels[HBITMAP_LEVELS];
93 };
94 
95 static inline int popcountl(unsigned long l)
96 {
97     return BITS_PER_LONG == 32 ? ctpop32(l) : ctpop64(l);
98 }
99 
100 /* Advance hbi to the next nonzero word and return it.  hbi->pos
101  * is updated.  Returns zero if we reach the end of the bitmap.
102  */
103 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
104 {
105     size_t pos = hbi->pos;
106     const HBitmap *hb = hbi->hb;
107     unsigned i = HBITMAP_LEVELS - 1;
108 
109     unsigned long cur;
110     do {
111         cur = hbi->cur[--i];
112         pos >>= BITS_PER_LEVEL;
113     } while (cur == 0);
114 
115     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
116      * bits in the level 0 bitmap; thus we can repurpose the most significant
117      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
118      * that the above loop ends even without an explicit check on i.
119      */
120 
121     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
122         return 0;
123     }
124     for (; i < HBITMAP_LEVELS - 1; i++) {
125         /* Shift back pos to the left, matching the right shifts above.
126          * The index of this word's least significant set bit provides
127          * the low-order bits.
128          */
129         assert(cur);
130         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
131         hbi->cur[i] = cur & (cur - 1);
132 
133         /* Set up next level for iteration.  */
134         cur = hb->levels[i + 1][pos];
135     }
136 
137     hbi->pos = pos;
138     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
139 
140     assert(cur);
141     return cur;
142 }
143 
144 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
145 {
146     unsigned i, bit;
147     uint64_t pos;
148 
149     hbi->hb = hb;
150     pos = first >> hb->granularity;
151     assert(pos < hb->size);
152     hbi->pos = pos >> BITS_PER_LEVEL;
153     hbi->granularity = hb->granularity;
154 
155     for (i = HBITMAP_LEVELS; i-- > 0; ) {
156         bit = pos & (BITS_PER_LONG - 1);
157         pos >>= BITS_PER_LEVEL;
158 
159         /* Drop bits representing items before first.  */
160         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
161 
162         /* We have already added level i+1, so the lowest set bit has
163          * been processed.  Clear it.
164          */
165         if (i != HBITMAP_LEVELS - 1) {
166             hbi->cur[i] &= ~(1UL << bit);
167         }
168     }
169 }
170 
171 bool hbitmap_empty(const HBitmap *hb)
172 {
173     return hb->count == 0;
174 }
175 
176 int hbitmap_granularity(const HBitmap *hb)
177 {
178     return hb->granularity;
179 }
180 
181 uint64_t hbitmap_count(const HBitmap *hb)
182 {
183     return hb->count << hb->granularity;
184 }
185 
186 /* Count the number of set bits between start and end, not accounting for
187  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
188  */
189 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
190 {
191     HBitmapIter hbi;
192     uint64_t count = 0;
193     uint64_t end = last + 1;
194     unsigned long cur;
195     size_t pos;
196 
197     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
198     for (;;) {
199         pos = hbitmap_iter_next_word(&hbi, &cur);
200         if (pos >= (end >> BITS_PER_LEVEL)) {
201             break;
202         }
203         count += popcountl(cur);
204     }
205 
206     if (pos == (end >> BITS_PER_LEVEL)) {
207         /* Drop bits representing the END-th and subsequent items.  */
208         int bit = end & (BITS_PER_LONG - 1);
209         cur &= (1UL << bit) - 1;
210         count += popcountl(cur);
211     }
212 
213     return count;
214 }
215 
216 /* Setting starts at the last layer and propagates up if an element
217  * changes from zero to non-zero.
218  */
219 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
220 {
221     unsigned long mask;
222     bool changed;
223 
224     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
225     assert(start <= last);
226 
227     mask = 2UL << (last & (BITS_PER_LONG - 1));
228     mask -= 1UL << (start & (BITS_PER_LONG - 1));
229     changed = (*elem == 0);
230     *elem |= mask;
231     return changed;
232 }
233 
234 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
235 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
236 {
237     size_t pos = start >> BITS_PER_LEVEL;
238     size_t lastpos = last >> BITS_PER_LEVEL;
239     bool changed = false;
240     size_t i;
241 
242     i = pos;
243     if (i < lastpos) {
244         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
245         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
246         for (;;) {
247             start = next;
248             next += BITS_PER_LONG;
249             if (++i == lastpos) {
250                 break;
251             }
252             changed |= (hb->levels[level][i] == 0);
253             hb->levels[level][i] = ~0UL;
254         }
255     }
256     changed |= hb_set_elem(&hb->levels[level][i], start, last);
257 
258     /* If there was any change in this layer, we may have to update
259      * the one above.
260      */
261     if (level > 0 && changed) {
262         hb_set_between(hb, level - 1, pos, lastpos);
263     }
264 }
265 
266 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
267 {
268     /* Compute range in the last layer.  */
269     uint64_t last = start + count - 1;
270 
271     trace_hbitmap_set(hb, start, count,
272                       start >> hb->granularity, last >> hb->granularity);
273 
274     start >>= hb->granularity;
275     last >>= hb->granularity;
276     count = last - start + 1;
277 
278     hb->count += count - hb_count_between(hb, start, last);
279     hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
280 }
281 
282 /* Resetting works the other way round: propagate up if the new
283  * value is zero.
284  */
285 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
286 {
287     unsigned long mask;
288     bool blanked;
289 
290     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
291     assert(start <= last);
292 
293     mask = 2UL << (last & (BITS_PER_LONG - 1));
294     mask -= 1UL << (start & (BITS_PER_LONG - 1));
295     blanked = *elem != 0 && ((*elem & ~mask) == 0);
296     *elem &= ~mask;
297     return blanked;
298 }
299 
300 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
301 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
302 {
303     size_t pos = start >> BITS_PER_LEVEL;
304     size_t lastpos = last >> BITS_PER_LEVEL;
305     bool changed = false;
306     size_t i;
307 
308     i = pos;
309     if (i < lastpos) {
310         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
311 
312         /* Here we need a more complex test than when setting bits.  Even if
313          * something was changed, we must not blank bits in the upper level
314          * unless the lower-level word became entirely zero.  So, remove pos
315          * from the upper-level range if bits remain set.
316          */
317         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
318             changed = true;
319         } else {
320             pos++;
321         }
322 
323         for (;;) {
324             start = next;
325             next += BITS_PER_LONG;
326             if (++i == lastpos) {
327                 break;
328             }
329             changed |= (hb->levels[level][i] != 0);
330             hb->levels[level][i] = 0UL;
331         }
332     }
333 
334     /* Same as above, this time for lastpos.  */
335     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
336         changed = true;
337     } else {
338         lastpos--;
339     }
340 
341     if (level > 0 && changed) {
342         hb_reset_between(hb, level - 1, pos, lastpos);
343     }
344 }
345 
346 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
347 {
348     /* Compute range in the last layer.  */
349     uint64_t last = start + count - 1;
350 
351     trace_hbitmap_reset(hb, start, count,
352                         start >> hb->granularity, last >> hb->granularity);
353 
354     start >>= hb->granularity;
355     last >>= hb->granularity;
356 
357     hb->count -= hb_count_between(hb, start, last);
358     hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
359 }
360 
361 bool hbitmap_get(const HBitmap *hb, uint64_t item)
362 {
363     /* Compute position and bit in the last layer.  */
364     uint64_t pos = item >> hb->granularity;
365     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
366 
367     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
368 }
369 
370 void hbitmap_free(HBitmap *hb)
371 {
372     unsigned i;
373     for (i = HBITMAP_LEVELS; i-- > 0; ) {
374         g_free(hb->levels[i]);
375     }
376     g_free(hb);
377 }
378 
379 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
380 {
381     HBitmap *hb = g_malloc0(sizeof (struct HBitmap));
382     unsigned i;
383 
384     assert(granularity >= 0 && granularity < 64);
385     size = (size + (1ULL << granularity) - 1) >> granularity;
386     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
387 
388     hb->size = size;
389     hb->granularity = granularity;
390     for (i = HBITMAP_LEVELS; i-- > 0; ) {
391         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
392         hb->levels[i] = g_malloc0(size * sizeof(unsigned long));
393     }
394 
395     /* We necessarily have free bits in level 0 due to the definition
396      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
397      * hbitmap_iter_skip_words.
398      */
399     assert(size == 1);
400     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
401     return hb;
402 }
403