xref: /openbmc/qemu/util/hbitmap.c (revision 429d3ae2)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
17 
18 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
19  * array of unsigned longs, but HBitmap is also optimized to provide fast
20  * iteration over set bits; going from one bit to the next is O(logB n)
21  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22  * that the number of levels is in fact fixed.
23  *
24  * In order to do this, it stacks multiple bitmaps with progressively coarser
25  * granularity; in all levels except the last, bit N is set iff the N-th
26  * unsigned long is nonzero in the immediately next level.  When iteration
27  * completes on the last level it can examine the 2nd-last level to quickly
28  * skip entire words, and even do so recursively to skip blocks of 64 words or
29  * powers thereof (32 on 32-bit machines).
30  *
31  * Given an index in the bitmap, it can be split in group of bits like
32  * this (for the 64-bit case):
33  *
34  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
35  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37  *
38  * So it is easy to move up simply by shifting the index right by
39  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
40  * similarly, and add the word index within the group.  Iteration uses
41  * ffs (find first set bit) to find the next word to examine; this
42  * operation can be done in constant time in most current architectures.
43  *
44  * Setting or clearing a range of m bits on all levels, the work to perform
45  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46  *
47  * When iterating on a bitmap, each bit (on any level) is only visited
48  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
49  * the number of bits that are set in all bitmaps.  Unless the bitmap is
50  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51  * cost of advancing from one bit to the next is usually constant (worst case
52  * O(logB n) as in the non-amortized complexity).
53  */
54 
55 struct HBitmap {
56     /* Number of total bits in the bottom level.  */
57     uint64_t size;
58 
59     /* Number of set bits in the bottom level.  */
60     uint64_t count;
61 
62     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
63      * will actually represent a group of 2^G elements.  Each operation on a
64      * range of bits first rounds the bits to determine which group they land
65      * in, and then affect the entire page; iteration will only visit the first
66      * bit of each group.  Here is an example of operations in a size-16,
67      * granularity-1 HBitmap:
68      *
69      *    initial state            00000000
70      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
71      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
72      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
73      *    reset(start=5, count=5)  00000000
74      *
75      * From an implementation point of view, when setting or resetting bits,
76      * the bitmap will scale bit numbers right by this amount of bits.  When
77      * iterating, the bitmap will scale bit numbers left by this amount of
78      * bits.
79      */
80     int granularity;
81 
82     /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
83     HBitmap *meta;
84 
85     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
86      * coarsest).  Each bit in level N represents a word in level N+1 that
87      * has a set bit, except the last level where each bit represents the
88      * actual bitmap.
89      *
90      * Note that all bitmaps have the same number of levels.  Even a 1-bit
91      * bitmap will still allocate HBITMAP_LEVELS arrays.
92      */
93     unsigned long *levels[HBITMAP_LEVELS];
94 
95     /* The length of each levels[] array. */
96     uint64_t sizes[HBITMAP_LEVELS];
97 };
98 
99 /* Advance hbi to the next nonzero word and return it.  hbi->pos
100  * is updated.  Returns zero if we reach the end of the bitmap.
101  */
102 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
103 {
104     size_t pos = hbi->pos;
105     const HBitmap *hb = hbi->hb;
106     unsigned i = HBITMAP_LEVELS - 1;
107 
108     unsigned long cur;
109     do {
110         i--;
111         pos >>= BITS_PER_LEVEL;
112         cur = hbi->cur[i] & hb->levels[i][pos];
113     } while (cur == 0);
114 
115     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
116      * bits in the level 0 bitmap; thus we can repurpose the most significant
117      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
118      * that the above loop ends even without an explicit check on i.
119      */
120 
121     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
122         return 0;
123     }
124     for (; i < HBITMAP_LEVELS - 1; i++) {
125         /* Shift back pos to the left, matching the right shifts above.
126          * The index of this word's least significant set bit provides
127          * the low-order bits.
128          */
129         assert(cur);
130         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
131         hbi->cur[i] = cur & (cur - 1);
132 
133         /* Set up next level for iteration.  */
134         cur = hb->levels[i + 1][pos];
135     }
136 
137     hbi->pos = pos;
138     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
139 
140     assert(cur);
141     return cur;
142 }
143 
144 int64_t hbitmap_iter_next(HBitmapIter *hbi, bool advance)
145 {
146     unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
147             hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
148     int64_t item;
149 
150     if (cur == 0) {
151         cur = hbitmap_iter_skip_words(hbi);
152         if (cur == 0) {
153             return -1;
154         }
155     }
156 
157     if (advance) {
158         /* The next call will resume work from the next bit.  */
159         hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
160     } else {
161         hbi->cur[HBITMAP_LEVELS - 1] = cur;
162     }
163     item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
164 
165     return item << hbi->granularity;
166 }
167 
168 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
169 {
170     unsigned i, bit;
171     uint64_t pos;
172 
173     hbi->hb = hb;
174     pos = first >> hb->granularity;
175     assert(pos < hb->size);
176     hbi->pos = pos >> BITS_PER_LEVEL;
177     hbi->granularity = hb->granularity;
178 
179     for (i = HBITMAP_LEVELS; i-- > 0; ) {
180         bit = pos & (BITS_PER_LONG - 1);
181         pos >>= BITS_PER_LEVEL;
182 
183         /* Drop bits representing items before first.  */
184         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
185 
186         /* We have already added level i+1, so the lowest set bit has
187          * been processed.  Clear it.
188          */
189         if (i != HBITMAP_LEVELS - 1) {
190             hbi->cur[i] &= ~(1UL << bit);
191         }
192     }
193 }
194 
195 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start)
196 {
197     size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
198     unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
199     uint64_t sz = hb->sizes[HBITMAP_LEVELS - 1];
200     unsigned long cur = last_lev[pos];
201     unsigned start_bit_offset =
202             (start >> hb->granularity) & (BITS_PER_LONG - 1);
203     int64_t res;
204 
205     cur |= (1UL << start_bit_offset) - 1;
206     assert((start >> hb->granularity) < hb->size);
207 
208     if (cur == (unsigned long)-1) {
209         do {
210             pos++;
211         } while (pos < sz && last_lev[pos] == (unsigned long)-1);
212 
213         if (pos >= sz) {
214             return -1;
215         }
216 
217         cur = last_lev[pos];
218     }
219 
220     res = (pos << BITS_PER_LEVEL) + ctol(cur);
221     if (res >= hb->size) {
222         return -1;
223     }
224 
225     res = res << hb->granularity;
226     if (res < start) {
227         assert(((start - res) >> hb->granularity) == 0);
228         return start;
229     }
230 
231     return res;
232 }
233 
234 bool hbitmap_empty(const HBitmap *hb)
235 {
236     return hb->count == 0;
237 }
238 
239 int hbitmap_granularity(const HBitmap *hb)
240 {
241     return hb->granularity;
242 }
243 
244 uint64_t hbitmap_count(const HBitmap *hb)
245 {
246     return hb->count << hb->granularity;
247 }
248 
249 /* Count the number of set bits between start and end, not accounting for
250  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
251  */
252 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
253 {
254     HBitmapIter hbi;
255     uint64_t count = 0;
256     uint64_t end = last + 1;
257     unsigned long cur;
258     size_t pos;
259 
260     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
261     for (;;) {
262         pos = hbitmap_iter_next_word(&hbi, &cur);
263         if (pos >= (end >> BITS_PER_LEVEL)) {
264             break;
265         }
266         count += ctpopl(cur);
267     }
268 
269     if (pos == (end >> BITS_PER_LEVEL)) {
270         /* Drop bits representing the END-th and subsequent items.  */
271         int bit = end & (BITS_PER_LONG - 1);
272         cur &= (1UL << bit) - 1;
273         count += ctpopl(cur);
274     }
275 
276     return count;
277 }
278 
279 /* Setting starts at the last layer and propagates up if an element
280  * changes.
281  */
282 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
283 {
284     unsigned long mask;
285     unsigned long old;
286 
287     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
288     assert(start <= last);
289 
290     mask = 2UL << (last & (BITS_PER_LONG - 1));
291     mask -= 1UL << (start & (BITS_PER_LONG - 1));
292     old = *elem;
293     *elem |= mask;
294     return old != *elem;
295 }
296 
297 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
298  * Returns true if at least one bit is changed. */
299 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
300                            uint64_t last)
301 {
302     size_t pos = start >> BITS_PER_LEVEL;
303     size_t lastpos = last >> BITS_PER_LEVEL;
304     bool changed = false;
305     size_t i;
306 
307     i = pos;
308     if (i < lastpos) {
309         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
310         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
311         for (;;) {
312             start = next;
313             next += BITS_PER_LONG;
314             if (++i == lastpos) {
315                 break;
316             }
317             changed |= (hb->levels[level][i] == 0);
318             hb->levels[level][i] = ~0UL;
319         }
320     }
321     changed |= hb_set_elem(&hb->levels[level][i], start, last);
322 
323     /* If there was any change in this layer, we may have to update
324      * the one above.
325      */
326     if (level > 0 && changed) {
327         hb_set_between(hb, level - 1, pos, lastpos);
328     }
329     return changed;
330 }
331 
332 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
333 {
334     /* Compute range in the last layer.  */
335     uint64_t first, n;
336     uint64_t last = start + count - 1;
337 
338     trace_hbitmap_set(hb, start, count,
339                       start >> hb->granularity, last >> hb->granularity);
340 
341     first = start >> hb->granularity;
342     last >>= hb->granularity;
343     assert(last < hb->size);
344     n = last - first + 1;
345 
346     hb->count += n - hb_count_between(hb, first, last);
347     if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
348         hb->meta) {
349         hbitmap_set(hb->meta, start, count);
350     }
351 }
352 
353 /* Resetting works the other way round: propagate up if the new
354  * value is zero.
355  */
356 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
357 {
358     unsigned long mask;
359     bool blanked;
360 
361     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
362     assert(start <= last);
363 
364     mask = 2UL << (last & (BITS_PER_LONG - 1));
365     mask -= 1UL << (start & (BITS_PER_LONG - 1));
366     blanked = *elem != 0 && ((*elem & ~mask) == 0);
367     *elem &= ~mask;
368     return blanked;
369 }
370 
371 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
372  * Returns true if at least one bit is changed. */
373 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
374                              uint64_t last)
375 {
376     size_t pos = start >> BITS_PER_LEVEL;
377     size_t lastpos = last >> BITS_PER_LEVEL;
378     bool changed = false;
379     size_t i;
380 
381     i = pos;
382     if (i < lastpos) {
383         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
384 
385         /* Here we need a more complex test than when setting bits.  Even if
386          * something was changed, we must not blank bits in the upper level
387          * unless the lower-level word became entirely zero.  So, remove pos
388          * from the upper-level range if bits remain set.
389          */
390         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
391             changed = true;
392         } else {
393             pos++;
394         }
395 
396         for (;;) {
397             start = next;
398             next += BITS_PER_LONG;
399             if (++i == lastpos) {
400                 break;
401             }
402             changed |= (hb->levels[level][i] != 0);
403             hb->levels[level][i] = 0UL;
404         }
405     }
406 
407     /* Same as above, this time for lastpos.  */
408     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
409         changed = true;
410     } else {
411         lastpos--;
412     }
413 
414     if (level > 0 && changed) {
415         hb_reset_between(hb, level - 1, pos, lastpos);
416     }
417 
418     return changed;
419 
420 }
421 
422 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
423 {
424     /* Compute range in the last layer.  */
425     uint64_t first;
426     uint64_t last = start + count - 1;
427 
428     trace_hbitmap_reset(hb, start, count,
429                         start >> hb->granularity, last >> hb->granularity);
430 
431     first = start >> hb->granularity;
432     last >>= hb->granularity;
433     assert(last < hb->size);
434 
435     hb->count -= hb_count_between(hb, first, last);
436     if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
437         hb->meta) {
438         hbitmap_set(hb->meta, start, count);
439     }
440 }
441 
442 void hbitmap_reset_all(HBitmap *hb)
443 {
444     unsigned int i;
445 
446     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
447     for (i = HBITMAP_LEVELS; --i >= 1; ) {
448         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
449     }
450 
451     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
452     hb->count = 0;
453 }
454 
455 bool hbitmap_is_serializable(const HBitmap *hb)
456 {
457     /* Every serialized chunk must be aligned to 64 bits so that endianness
458      * requirements can be fulfilled on both 64 bit and 32 bit hosts.
459      * We have hbitmap_serialization_align() which converts this
460      * alignment requirement from bitmap bits to items covered (e.g. sectors).
461      * That value is:
462      *    64 << hb->granularity
463      * Since this value must not exceed UINT64_MAX, hb->granularity must be
464      * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
465      *
466      * In order for hbitmap_serialization_align() to always return a
467      * meaningful value, bitmaps that are to be serialized must have a
468      * granularity of less than 58. */
469 
470     return hb->granularity < 58;
471 }
472 
473 bool hbitmap_get(const HBitmap *hb, uint64_t item)
474 {
475     /* Compute position and bit in the last layer.  */
476     uint64_t pos = item >> hb->granularity;
477     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
478     assert(pos < hb->size);
479 
480     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
481 }
482 
483 uint64_t hbitmap_serialization_align(const HBitmap *hb)
484 {
485     assert(hbitmap_is_serializable(hb));
486 
487     /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
488      * hosts. */
489     return UINT64_C(64) << hb->granularity;
490 }
491 
492 /* Start should be aligned to serialization granularity, chunk size should be
493  * aligned to serialization granularity too, except for last chunk.
494  */
495 static void serialization_chunk(const HBitmap *hb,
496                                 uint64_t start, uint64_t count,
497                                 unsigned long **first_el, uint64_t *el_count)
498 {
499     uint64_t last = start + count - 1;
500     uint64_t gran = hbitmap_serialization_align(hb);
501 
502     assert((start & (gran - 1)) == 0);
503     assert((last >> hb->granularity) < hb->size);
504     if ((last >> hb->granularity) != hb->size - 1) {
505         assert((count & (gran - 1)) == 0);
506     }
507 
508     start = (start >> hb->granularity) >> BITS_PER_LEVEL;
509     last = (last >> hb->granularity) >> BITS_PER_LEVEL;
510 
511     *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
512     *el_count = last - start + 1;
513 }
514 
515 uint64_t hbitmap_serialization_size(const HBitmap *hb,
516                                     uint64_t start, uint64_t count)
517 {
518     uint64_t el_count;
519     unsigned long *cur;
520 
521     if (!count) {
522         return 0;
523     }
524     serialization_chunk(hb, start, count, &cur, &el_count);
525 
526     return el_count * sizeof(unsigned long);
527 }
528 
529 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
530                             uint64_t start, uint64_t count)
531 {
532     uint64_t el_count;
533     unsigned long *cur, *end;
534 
535     if (!count) {
536         return;
537     }
538     serialization_chunk(hb, start, count, &cur, &el_count);
539     end = cur + el_count;
540 
541     while (cur != end) {
542         unsigned long el =
543             (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
544 
545         memcpy(buf, &el, sizeof(el));
546         buf += sizeof(el);
547         cur++;
548     }
549 }
550 
551 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
552                               uint64_t start, uint64_t count,
553                               bool finish)
554 {
555     uint64_t el_count;
556     unsigned long *cur, *end;
557 
558     if (!count) {
559         return;
560     }
561     serialization_chunk(hb, start, count, &cur, &el_count);
562     end = cur + el_count;
563 
564     while (cur != end) {
565         memcpy(cur, buf, sizeof(*cur));
566 
567         if (BITS_PER_LONG == 32) {
568             le32_to_cpus((uint32_t *)cur);
569         } else {
570             le64_to_cpus((uint64_t *)cur);
571         }
572 
573         buf += sizeof(unsigned long);
574         cur++;
575     }
576     if (finish) {
577         hbitmap_deserialize_finish(hb);
578     }
579 }
580 
581 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
582                                 bool finish)
583 {
584     uint64_t el_count;
585     unsigned long *first;
586 
587     if (!count) {
588         return;
589     }
590     serialization_chunk(hb, start, count, &first, &el_count);
591 
592     memset(first, 0, el_count * sizeof(unsigned long));
593     if (finish) {
594         hbitmap_deserialize_finish(hb);
595     }
596 }
597 
598 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
599                               bool finish)
600 {
601     uint64_t el_count;
602     unsigned long *first;
603 
604     if (!count) {
605         return;
606     }
607     serialization_chunk(hb, start, count, &first, &el_count);
608 
609     memset(first, 0xff, el_count * sizeof(unsigned long));
610     if (finish) {
611         hbitmap_deserialize_finish(hb);
612     }
613 }
614 
615 void hbitmap_deserialize_finish(HBitmap *bitmap)
616 {
617     int64_t i, size, prev_size;
618     int lev;
619 
620     /* restore levels starting from penultimate to zero level, assuming
621      * that the last level is ok */
622     size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
623     for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
624         prev_size = size;
625         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
626         memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
627 
628         for (i = 0; i < prev_size; ++i) {
629             if (bitmap->levels[lev + 1][i]) {
630                 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
631                     1UL << (i & (BITS_PER_LONG - 1));
632             }
633         }
634     }
635 
636     bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
637     bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
638 }
639 
640 void hbitmap_free(HBitmap *hb)
641 {
642     unsigned i;
643     assert(!hb->meta);
644     for (i = HBITMAP_LEVELS; i-- > 0; ) {
645         g_free(hb->levels[i]);
646     }
647     g_free(hb);
648 }
649 
650 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
651 {
652     HBitmap *hb = g_new0(struct HBitmap, 1);
653     unsigned i;
654 
655     assert(granularity >= 0 && granularity < 64);
656     size = (size + (1ULL << granularity) - 1) >> granularity;
657     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
658 
659     hb->size = size;
660     hb->granularity = granularity;
661     for (i = HBITMAP_LEVELS; i-- > 0; ) {
662         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
663         hb->sizes[i] = size;
664         hb->levels[i] = g_new0(unsigned long, size);
665     }
666 
667     /* We necessarily have free bits in level 0 due to the definition
668      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
669      * hbitmap_iter_skip_words.
670      */
671     assert(size == 1);
672     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
673     return hb;
674 }
675 
676 void hbitmap_truncate(HBitmap *hb, uint64_t size)
677 {
678     bool shrink;
679     unsigned i;
680     uint64_t num_elements = size;
681     uint64_t old;
682 
683     /* Size comes in as logical elements, adjust for granularity. */
684     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
685     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
686     shrink = size < hb->size;
687 
688     /* bit sizes are identical; nothing to do. */
689     if (size == hb->size) {
690         return;
691     }
692 
693     /* If we're losing bits, let's clear those bits before we invalidate all of
694      * our invariants. This helps keep the bitcount consistent, and will prevent
695      * us from carrying around garbage bits beyond the end of the map.
696      */
697     if (shrink) {
698         /* Don't clear partial granularity groups;
699          * start at the first full one. */
700         uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
701         uint64_t fix_count = (hb->size << hb->granularity) - start;
702 
703         assert(fix_count);
704         hbitmap_reset(hb, start, fix_count);
705     }
706 
707     hb->size = size;
708     for (i = HBITMAP_LEVELS; i-- > 0; ) {
709         size = MAX(BITS_TO_LONGS(size), 1);
710         if (hb->sizes[i] == size) {
711             break;
712         }
713         old = hb->sizes[i];
714         hb->sizes[i] = size;
715         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
716         if (!shrink) {
717             memset(&hb->levels[i][old], 0x00,
718                    (size - old) * sizeof(*hb->levels[i]));
719         }
720     }
721     if (hb->meta) {
722         hbitmap_truncate(hb->meta, hb->size << hb->granularity);
723     }
724 }
725 
726 
727 /**
728  * Given HBitmaps A and B, let A := A (BITOR) B.
729  * Bitmap B will not be modified.
730  *
731  * @return true if the merge was successful,
732  *         false if it was not attempted.
733  */
734 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
735 {
736     int i;
737     uint64_t j;
738 
739     if ((a->size != b->size) || (a->granularity != b->granularity)) {
740         return false;
741     }
742 
743     if (hbitmap_count(b) == 0) {
744         return true;
745     }
746 
747     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
748      * It may be possible to improve running times for sparsely populated maps
749      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
750      */
751     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
752         for (j = 0; j < a->sizes[i]; j++) {
753             a->levels[i][j] |= b->levels[i][j];
754         }
755     }
756 
757     return true;
758 }
759 
760 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
761 {
762     assert(!(chunk_size & (chunk_size - 1)));
763     assert(!hb->meta);
764     hb->meta = hbitmap_alloc(hb->size << hb->granularity,
765                              hb->granularity + ctz32(chunk_size));
766     return hb->meta;
767 }
768 
769 void hbitmap_free_meta(HBitmap *hb)
770 {
771     assert(hb->meta);
772     hbitmap_free(hb->meta);
773     hb->meta = NULL;
774 }
775 
776 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
777 {
778     size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
779     char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
780     char *hash = NULL;
781     qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
782 
783     return hash;
784 }
785