xref: /openbmc/qemu/util/hbitmap.c (revision 2822c1b6)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include <string.h>
13 #include <glib.h>
14 #include <assert.h>
15 #include "qemu/osdep.h"
16 #include "qemu/hbitmap.h"
17 #include "qemu/host-utils.h"
18 #include "trace.h"
19 
20 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
21  * array of unsigned longs, but HBitmap is also optimized to provide fast
22  * iteration over set bits; going from one bit to the next is O(logB n)
23  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
24  * that the number of levels is in fact fixed.
25  *
26  * In order to do this, it stacks multiple bitmaps with progressively coarser
27  * granularity; in all levels except the last, bit N is set iff the N-th
28  * unsigned long is nonzero in the immediately next level.  When iteration
29  * completes on the last level it can examine the 2nd-last level to quickly
30  * skip entire words, and even do so recursively to skip blocks of 64 words or
31  * powers thereof (32 on 32-bit machines).
32  *
33  * Given an index in the bitmap, it can be split in group of bits like
34  * this (for the 64-bit case):
35  *
36  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
37  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
38  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
39  *
40  * So it is easy to move up simply by shifting the index right by
41  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
42  * similarly, and add the word index within the group.  Iteration uses
43  * ffs (find first set bit) to find the next word to examine; this
44  * operation can be done in constant time in most current architectures.
45  *
46  * Setting or clearing a range of m bits on all levels, the work to perform
47  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
48  *
49  * When iterating on a bitmap, each bit (on any level) is only visited
50  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
51  * the number of bits that are set in all bitmaps.  Unless the bitmap is
52  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
53  * cost of advancing from one bit to the next is usually constant (worst case
54  * O(logB n) as in the non-amortized complexity).
55  */
56 
57 struct HBitmap {
58     /* Number of total bits in the bottom level.  */
59     uint64_t size;
60 
61     /* Number of set bits in the bottom level.  */
62     uint64_t count;
63 
64     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
65      * will actually represent a group of 2^G elements.  Each operation on a
66      * range of bits first rounds the bits to determine which group they land
67      * in, and then affect the entire page; iteration will only visit the first
68      * bit of each group.  Here is an example of operations in a size-16,
69      * granularity-1 HBitmap:
70      *
71      *    initial state            00000000
72      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
73      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
74      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
75      *    reset(start=5, count=5)  00000000
76      *
77      * From an implementation point of view, when setting or resetting bits,
78      * the bitmap will scale bit numbers right by this amount of bits.  When
79      * iterating, the bitmap will scale bit numbers left by this amount of
80      * bits.
81      */
82     int granularity;
83 
84     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
85      * coarsest).  Each bit in level N represents a word in level N+1 that
86      * has a set bit, except the last level where each bit represents the
87      * actual bitmap.
88      *
89      * Note that all bitmaps have the same number of levels.  Even a 1-bit
90      * bitmap will still allocate HBITMAP_LEVELS arrays.
91      */
92     unsigned long *levels[HBITMAP_LEVELS];
93 };
94 
95 /* Advance hbi to the next nonzero word and return it.  hbi->pos
96  * is updated.  Returns zero if we reach the end of the bitmap.
97  */
98 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
99 {
100     size_t pos = hbi->pos;
101     const HBitmap *hb = hbi->hb;
102     unsigned i = HBITMAP_LEVELS - 1;
103 
104     unsigned long cur;
105     do {
106         cur = hbi->cur[--i];
107         pos >>= BITS_PER_LEVEL;
108     } while (cur == 0);
109 
110     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
111      * bits in the level 0 bitmap; thus we can repurpose the most significant
112      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
113      * that the above loop ends even without an explicit check on i.
114      */
115 
116     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
117         return 0;
118     }
119     for (; i < HBITMAP_LEVELS - 1; i++) {
120         /* Shift back pos to the left, matching the right shifts above.
121          * The index of this word's least significant set bit provides
122          * the low-order bits.
123          */
124         assert(cur);
125         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
126         hbi->cur[i] = cur & (cur - 1);
127 
128         /* Set up next level for iteration.  */
129         cur = hb->levels[i + 1][pos];
130     }
131 
132     hbi->pos = pos;
133     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
134 
135     assert(cur);
136     return cur;
137 }
138 
139 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
140 {
141     unsigned i, bit;
142     uint64_t pos;
143 
144     hbi->hb = hb;
145     pos = first >> hb->granularity;
146     assert(pos < hb->size);
147     hbi->pos = pos >> BITS_PER_LEVEL;
148     hbi->granularity = hb->granularity;
149 
150     for (i = HBITMAP_LEVELS; i-- > 0; ) {
151         bit = pos & (BITS_PER_LONG - 1);
152         pos >>= BITS_PER_LEVEL;
153 
154         /* Drop bits representing items before first.  */
155         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
156 
157         /* We have already added level i+1, so the lowest set bit has
158          * been processed.  Clear it.
159          */
160         if (i != HBITMAP_LEVELS - 1) {
161             hbi->cur[i] &= ~(1UL << bit);
162         }
163     }
164 }
165 
166 bool hbitmap_empty(const HBitmap *hb)
167 {
168     return hb->count == 0;
169 }
170 
171 int hbitmap_granularity(const HBitmap *hb)
172 {
173     return hb->granularity;
174 }
175 
176 uint64_t hbitmap_count(const HBitmap *hb)
177 {
178     return hb->count << hb->granularity;
179 }
180 
181 /* Count the number of set bits between start and end, not accounting for
182  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
183  */
184 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
185 {
186     HBitmapIter hbi;
187     uint64_t count = 0;
188     uint64_t end = last + 1;
189     unsigned long cur;
190     size_t pos;
191 
192     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
193     for (;;) {
194         pos = hbitmap_iter_next_word(&hbi, &cur);
195         if (pos >= (end >> BITS_PER_LEVEL)) {
196             break;
197         }
198         count += ctpopl(cur);
199     }
200 
201     if (pos == (end >> BITS_PER_LEVEL)) {
202         /* Drop bits representing the END-th and subsequent items.  */
203         int bit = end & (BITS_PER_LONG - 1);
204         cur &= (1UL << bit) - 1;
205         count += ctpopl(cur);
206     }
207 
208     return count;
209 }
210 
211 /* Setting starts at the last layer and propagates up if an element
212  * changes from zero to non-zero.
213  */
214 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
215 {
216     unsigned long mask;
217     bool changed;
218 
219     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
220     assert(start <= last);
221 
222     mask = 2UL << (last & (BITS_PER_LONG - 1));
223     mask -= 1UL << (start & (BITS_PER_LONG - 1));
224     changed = (*elem == 0);
225     *elem |= mask;
226     return changed;
227 }
228 
229 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
230 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
231 {
232     size_t pos = start >> BITS_PER_LEVEL;
233     size_t lastpos = last >> BITS_PER_LEVEL;
234     bool changed = false;
235     size_t i;
236 
237     i = pos;
238     if (i < lastpos) {
239         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
240         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
241         for (;;) {
242             start = next;
243             next += BITS_PER_LONG;
244             if (++i == lastpos) {
245                 break;
246             }
247             changed |= (hb->levels[level][i] == 0);
248             hb->levels[level][i] = ~0UL;
249         }
250     }
251     changed |= hb_set_elem(&hb->levels[level][i], start, last);
252 
253     /* If there was any change in this layer, we may have to update
254      * the one above.
255      */
256     if (level > 0 && changed) {
257         hb_set_between(hb, level - 1, pos, lastpos);
258     }
259 }
260 
261 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
262 {
263     /* Compute range in the last layer.  */
264     uint64_t last = start + count - 1;
265 
266     trace_hbitmap_set(hb, start, count,
267                       start >> hb->granularity, last >> hb->granularity);
268 
269     start >>= hb->granularity;
270     last >>= hb->granularity;
271     count = last - start + 1;
272 
273     hb->count += count - hb_count_between(hb, start, last);
274     hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
275 }
276 
277 /* Resetting works the other way round: propagate up if the new
278  * value is zero.
279  */
280 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
281 {
282     unsigned long mask;
283     bool blanked;
284 
285     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
286     assert(start <= last);
287 
288     mask = 2UL << (last & (BITS_PER_LONG - 1));
289     mask -= 1UL << (start & (BITS_PER_LONG - 1));
290     blanked = *elem != 0 && ((*elem & ~mask) == 0);
291     *elem &= ~mask;
292     return blanked;
293 }
294 
295 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
296 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
297 {
298     size_t pos = start >> BITS_PER_LEVEL;
299     size_t lastpos = last >> BITS_PER_LEVEL;
300     bool changed = false;
301     size_t i;
302 
303     i = pos;
304     if (i < lastpos) {
305         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
306 
307         /* Here we need a more complex test than when setting bits.  Even if
308          * something was changed, we must not blank bits in the upper level
309          * unless the lower-level word became entirely zero.  So, remove pos
310          * from the upper-level range if bits remain set.
311          */
312         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
313             changed = true;
314         } else {
315             pos++;
316         }
317 
318         for (;;) {
319             start = next;
320             next += BITS_PER_LONG;
321             if (++i == lastpos) {
322                 break;
323             }
324             changed |= (hb->levels[level][i] != 0);
325             hb->levels[level][i] = 0UL;
326         }
327     }
328 
329     /* Same as above, this time for lastpos.  */
330     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
331         changed = true;
332     } else {
333         lastpos--;
334     }
335 
336     if (level > 0 && changed) {
337         hb_reset_between(hb, level - 1, pos, lastpos);
338     }
339 }
340 
341 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
342 {
343     /* Compute range in the last layer.  */
344     uint64_t last = start + count - 1;
345 
346     trace_hbitmap_reset(hb, start, count,
347                         start >> hb->granularity, last >> hb->granularity);
348 
349     start >>= hb->granularity;
350     last >>= hb->granularity;
351 
352     hb->count -= hb_count_between(hb, start, last);
353     hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
354 }
355 
356 bool hbitmap_get(const HBitmap *hb, uint64_t item)
357 {
358     /* Compute position and bit in the last layer.  */
359     uint64_t pos = item >> hb->granularity;
360     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
361 
362     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
363 }
364 
365 void hbitmap_free(HBitmap *hb)
366 {
367     unsigned i;
368     for (i = HBITMAP_LEVELS; i-- > 0; ) {
369         g_free(hb->levels[i]);
370     }
371     g_free(hb);
372 }
373 
374 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
375 {
376     HBitmap *hb = g_new0(struct HBitmap, 1);
377     unsigned i;
378 
379     assert(granularity >= 0 && granularity < 64);
380     size = (size + (1ULL << granularity) - 1) >> granularity;
381     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
382 
383     hb->size = size;
384     hb->granularity = granularity;
385     for (i = HBITMAP_LEVELS; i-- > 0; ) {
386         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
387         hb->levels[i] = g_new0(unsigned long, size);
388     }
389 
390     /* We necessarily have free bits in level 0 due to the definition
391      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
392      * hbitmap_iter_skip_words.
393      */
394     assert(size == 1);
395     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
396     return hb;
397 }
398