1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include <string.h> 13 #include <glib.h> 14 #include <assert.h> 15 #include "qemu/osdep.h" 16 #include "qemu/hbitmap.h" 17 #include "qemu/host-utils.h" 18 #include "trace.h" 19 20 /* HBitmaps provides an array of bits. The bits are stored as usual in an 21 * array of unsigned longs, but HBitmap is also optimized to provide fast 22 * iteration over set bits; going from one bit to the next is O(logB n) 23 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 24 * that the number of levels is in fact fixed. 25 * 26 * In order to do this, it stacks multiple bitmaps with progressively coarser 27 * granularity; in all levels except the last, bit N is set iff the N-th 28 * unsigned long is nonzero in the immediately next level. When iteration 29 * completes on the last level it can examine the 2nd-last level to quickly 30 * skip entire words, and even do so recursively to skip blocks of 64 words or 31 * powers thereof (32 on 32-bit machines). 32 * 33 * Given an index in the bitmap, it can be split in group of bits like 34 * this (for the 64-bit case): 35 * 36 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 37 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 38 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 39 * 40 * So it is easy to move up simply by shifting the index right by 41 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 42 * similarly, and add the word index within the group. Iteration uses 43 * ffs (find first set bit) to find the next word to examine; this 44 * operation can be done in constant time in most current architectures. 45 * 46 * Setting or clearing a range of m bits on all levels, the work to perform 47 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 48 * 49 * When iterating on a bitmap, each bit (on any level) is only visited 50 * once. Hence, The total cost of visiting a bitmap with m bits in it is 51 * the number of bits that are set in all bitmaps. Unless the bitmap is 52 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 53 * cost of advancing from one bit to the next is usually constant (worst case 54 * O(logB n) as in the non-amortized complexity). 55 */ 56 57 struct HBitmap { 58 /* Number of total bits in the bottom level. */ 59 uint64_t size; 60 61 /* Number of set bits in the bottom level. */ 62 uint64_t count; 63 64 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 65 * will actually represent a group of 2^G elements. Each operation on a 66 * range of bits first rounds the bits to determine which group they land 67 * in, and then affect the entire page; iteration will only visit the first 68 * bit of each group. Here is an example of operations in a size-16, 69 * granularity-1 HBitmap: 70 * 71 * initial state 00000000 72 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 73 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 74 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 75 * reset(start=5, count=5) 00000000 76 * 77 * From an implementation point of view, when setting or resetting bits, 78 * the bitmap will scale bit numbers right by this amount of bits. When 79 * iterating, the bitmap will scale bit numbers left by this amount of 80 * bits. 81 */ 82 int granularity; 83 84 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 85 * coarsest). Each bit in level N represents a word in level N+1 that 86 * has a set bit, except the last level where each bit represents the 87 * actual bitmap. 88 * 89 * Note that all bitmaps have the same number of levels. Even a 1-bit 90 * bitmap will still allocate HBITMAP_LEVELS arrays. 91 */ 92 unsigned long *levels[HBITMAP_LEVELS]; 93 }; 94 95 static inline int popcountl(unsigned long l) 96 { 97 return BITS_PER_LONG == 32 ? ctpop32(l) : ctpop64(l); 98 } 99 100 /* Advance hbi to the next nonzero word and return it. hbi->pos 101 * is updated. Returns zero if we reach the end of the bitmap. 102 */ 103 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 104 { 105 size_t pos = hbi->pos; 106 const HBitmap *hb = hbi->hb; 107 unsigned i = HBITMAP_LEVELS - 1; 108 109 unsigned long cur; 110 do { 111 cur = hbi->cur[--i]; 112 pos >>= BITS_PER_LEVEL; 113 } while (cur == 0); 114 115 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 116 * bits in the level 0 bitmap; thus we can repurpose the most significant 117 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 118 * that the above loop ends even without an explicit check on i. 119 */ 120 121 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 122 return 0; 123 } 124 for (; i < HBITMAP_LEVELS - 1; i++) { 125 /* Shift back pos to the left, matching the right shifts above. 126 * The index of this word's least significant set bit provides 127 * the low-order bits. 128 */ 129 assert(cur); 130 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 131 hbi->cur[i] = cur & (cur - 1); 132 133 /* Set up next level for iteration. */ 134 cur = hb->levels[i + 1][pos]; 135 } 136 137 hbi->pos = pos; 138 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 139 140 assert(cur); 141 return cur; 142 } 143 144 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 145 { 146 unsigned i, bit; 147 uint64_t pos; 148 149 hbi->hb = hb; 150 pos = first >> hb->granularity; 151 assert(pos < hb->size); 152 hbi->pos = pos >> BITS_PER_LEVEL; 153 hbi->granularity = hb->granularity; 154 155 for (i = HBITMAP_LEVELS; i-- > 0; ) { 156 bit = pos & (BITS_PER_LONG - 1); 157 pos >>= BITS_PER_LEVEL; 158 159 /* Drop bits representing items before first. */ 160 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 161 162 /* We have already added level i+1, so the lowest set bit has 163 * been processed. Clear it. 164 */ 165 if (i != HBITMAP_LEVELS - 1) { 166 hbi->cur[i] &= ~(1UL << bit); 167 } 168 } 169 } 170 171 bool hbitmap_empty(const HBitmap *hb) 172 { 173 return hb->count == 0; 174 } 175 176 int hbitmap_granularity(const HBitmap *hb) 177 { 178 return hb->granularity; 179 } 180 181 uint64_t hbitmap_count(const HBitmap *hb) 182 { 183 return hb->count << hb->granularity; 184 } 185 186 /* Count the number of set bits between start and end, not accounting for 187 * the granularity. Also an example of how to use hbitmap_iter_next_word. 188 */ 189 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 190 { 191 HBitmapIter hbi; 192 uint64_t count = 0; 193 uint64_t end = last + 1; 194 unsigned long cur; 195 size_t pos; 196 197 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 198 for (;;) { 199 pos = hbitmap_iter_next_word(&hbi, &cur); 200 if (pos >= (end >> BITS_PER_LEVEL)) { 201 break; 202 } 203 count += popcountl(cur); 204 } 205 206 if (pos == (end >> BITS_PER_LEVEL)) { 207 /* Drop bits representing the END-th and subsequent items. */ 208 int bit = end & (BITS_PER_LONG - 1); 209 cur &= (1UL << bit) - 1; 210 count += popcountl(cur); 211 } 212 213 return count; 214 } 215 216 /* Setting starts at the last layer and propagates up if an element 217 * changes from zero to non-zero. 218 */ 219 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 220 { 221 unsigned long mask; 222 bool changed; 223 224 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 225 assert(start <= last); 226 227 mask = 2UL << (last & (BITS_PER_LONG - 1)); 228 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 229 changed = (*elem == 0); 230 *elem |= mask; 231 return changed; 232 } 233 234 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */ 235 static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last) 236 { 237 size_t pos = start >> BITS_PER_LEVEL; 238 size_t lastpos = last >> BITS_PER_LEVEL; 239 bool changed = false; 240 size_t i; 241 242 i = pos; 243 if (i < lastpos) { 244 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 245 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 246 for (;;) { 247 start = next; 248 next += BITS_PER_LONG; 249 if (++i == lastpos) { 250 break; 251 } 252 changed |= (hb->levels[level][i] == 0); 253 hb->levels[level][i] = ~0UL; 254 } 255 } 256 changed |= hb_set_elem(&hb->levels[level][i], start, last); 257 258 /* If there was any change in this layer, we may have to update 259 * the one above. 260 */ 261 if (level > 0 && changed) { 262 hb_set_between(hb, level - 1, pos, lastpos); 263 } 264 } 265 266 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 267 { 268 /* Compute range in the last layer. */ 269 uint64_t last = start + count - 1; 270 271 trace_hbitmap_set(hb, start, count, 272 start >> hb->granularity, last >> hb->granularity); 273 274 start >>= hb->granularity; 275 last >>= hb->granularity; 276 count = last - start + 1; 277 278 hb->count += count - hb_count_between(hb, start, last); 279 hb_set_between(hb, HBITMAP_LEVELS - 1, start, last); 280 } 281 282 /* Resetting works the other way round: propagate up if the new 283 * value is zero. 284 */ 285 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 286 { 287 unsigned long mask; 288 bool blanked; 289 290 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 291 assert(start <= last); 292 293 mask = 2UL << (last & (BITS_PER_LONG - 1)); 294 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 295 blanked = *elem != 0 && ((*elem & ~mask) == 0); 296 *elem &= ~mask; 297 return blanked; 298 } 299 300 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */ 301 static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last) 302 { 303 size_t pos = start >> BITS_PER_LEVEL; 304 size_t lastpos = last >> BITS_PER_LEVEL; 305 bool changed = false; 306 size_t i; 307 308 i = pos; 309 if (i < lastpos) { 310 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 311 312 /* Here we need a more complex test than when setting bits. Even if 313 * something was changed, we must not blank bits in the upper level 314 * unless the lower-level word became entirely zero. So, remove pos 315 * from the upper-level range if bits remain set. 316 */ 317 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 318 changed = true; 319 } else { 320 pos++; 321 } 322 323 for (;;) { 324 start = next; 325 next += BITS_PER_LONG; 326 if (++i == lastpos) { 327 break; 328 } 329 changed |= (hb->levels[level][i] != 0); 330 hb->levels[level][i] = 0UL; 331 } 332 } 333 334 /* Same as above, this time for lastpos. */ 335 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 336 changed = true; 337 } else { 338 lastpos--; 339 } 340 341 if (level > 0 && changed) { 342 hb_reset_between(hb, level - 1, pos, lastpos); 343 } 344 } 345 346 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 347 { 348 /* Compute range in the last layer. */ 349 uint64_t last = start + count - 1; 350 351 trace_hbitmap_reset(hb, start, count, 352 start >> hb->granularity, last >> hb->granularity); 353 354 start >>= hb->granularity; 355 last >>= hb->granularity; 356 357 hb->count -= hb_count_between(hb, start, last); 358 hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last); 359 } 360 361 bool hbitmap_get(const HBitmap *hb, uint64_t item) 362 { 363 /* Compute position and bit in the last layer. */ 364 uint64_t pos = item >> hb->granularity; 365 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 366 367 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 368 } 369 370 void hbitmap_free(HBitmap *hb) 371 { 372 unsigned i; 373 for (i = HBITMAP_LEVELS; i-- > 0; ) { 374 g_free(hb->levels[i]); 375 } 376 g_free(hb); 377 } 378 379 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 380 { 381 HBitmap *hb = g_malloc0(sizeof (struct HBitmap)); 382 unsigned i; 383 384 assert(granularity >= 0 && granularity < 64); 385 size = (size + (1ULL << granularity) - 1) >> granularity; 386 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 387 388 hb->size = size; 389 hb->granularity = granularity; 390 for (i = HBITMAP_LEVELS; i-- > 0; ) { 391 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 392 hb->levels[i] = g_malloc0(size * sizeof(unsigned long)); 393 } 394 395 /* We necessarily have free bits in level 0 due to the definition 396 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 397 * hbitmap_iter_skip_words. 398 */ 399 assert(size == 1); 400 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 401 return hb; 402 } 403