xref: /openbmc/qemu/util/hbitmap.c (revision 10df8ff1)
1 /*
2  * Hierarchical Bitmap Data Type
3  *
4  * Copyright Red Hat, Inc., 2012
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or
9  * later.  See the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
17 
18 /* HBitmaps provides an array of bits.  The bits are stored as usual in an
19  * array of unsigned longs, but HBitmap is also optimized to provide fast
20  * iteration over set bits; going from one bit to the next is O(logB n)
21  * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22  * that the number of levels is in fact fixed.
23  *
24  * In order to do this, it stacks multiple bitmaps with progressively coarser
25  * granularity; in all levels except the last, bit N is set iff the N-th
26  * unsigned long is nonzero in the immediately next level.  When iteration
27  * completes on the last level it can examine the 2nd-last level to quickly
28  * skip entire words, and even do so recursively to skip blocks of 64 words or
29  * powers thereof (32 on 32-bit machines).
30  *
31  * Given an index in the bitmap, it can be split in group of bits like
32  * this (for the 64-bit case):
33  *
34  *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
35  *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36  *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37  *
38  * So it is easy to move up simply by shifting the index right by
39  * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
40  * similarly, and add the word index within the group.  Iteration uses
41  * ffs (find first set bit) to find the next word to examine; this
42  * operation can be done in constant time in most current architectures.
43  *
44  * Setting or clearing a range of m bits on all levels, the work to perform
45  * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46  *
47  * When iterating on a bitmap, each bit (on any level) is only visited
48  * once.  Hence, The total cost of visiting a bitmap with m bits in it is
49  * the number of bits that are set in all bitmaps.  Unless the bitmap is
50  * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51  * cost of advancing from one bit to the next is usually constant (worst case
52  * O(logB n) as in the non-amortized complexity).
53  */
54 
55 struct HBitmap {
56     /* Size of the bitmap, as requested in hbitmap_alloc. */
57     uint64_t orig_size;
58 
59     /* Number of total bits in the bottom level.  */
60     uint64_t size;
61 
62     /* Number of set bits in the bottom level.  */
63     uint64_t count;
64 
65     /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
66      * will actually represent a group of 2^G elements.  Each operation on a
67      * range of bits first rounds the bits to determine which group they land
68      * in, and then affect the entire page; iteration will only visit the first
69      * bit of each group.  Here is an example of operations in a size-16,
70      * granularity-1 HBitmap:
71      *
72      *    initial state            00000000
73      *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
74      *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
75      *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
76      *    reset(start=5, count=5)  00000000
77      *
78      * From an implementation point of view, when setting or resetting bits,
79      * the bitmap will scale bit numbers right by this amount of bits.  When
80      * iterating, the bitmap will scale bit numbers left by this amount of
81      * bits.
82      */
83     int granularity;
84 
85     /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
86     HBitmap *meta;
87 
88     /* A number of progressively less coarse bitmaps (i.e. level 0 is the
89      * coarsest).  Each bit in level N represents a word in level N+1 that
90      * has a set bit, except the last level where each bit represents the
91      * actual bitmap.
92      *
93      * Note that all bitmaps have the same number of levels.  Even a 1-bit
94      * bitmap will still allocate HBITMAP_LEVELS arrays.
95      */
96     unsigned long *levels[HBITMAP_LEVELS];
97 
98     /* The length of each levels[] array. */
99     uint64_t sizes[HBITMAP_LEVELS];
100 };
101 
102 /* Advance hbi to the next nonzero word and return it.  hbi->pos
103  * is updated.  Returns zero if we reach the end of the bitmap.
104  */
105 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
106 {
107     size_t pos = hbi->pos;
108     const HBitmap *hb = hbi->hb;
109     unsigned i = HBITMAP_LEVELS - 1;
110 
111     unsigned long cur;
112     do {
113         i--;
114         pos >>= BITS_PER_LEVEL;
115         cur = hbi->cur[i] & hb->levels[i][pos];
116     } while (cur == 0);
117 
118     /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
119      * bits in the level 0 bitmap; thus we can repurpose the most significant
120      * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
121      * that the above loop ends even without an explicit check on i.
122      */
123 
124     if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
125         return 0;
126     }
127     for (; i < HBITMAP_LEVELS - 1; i++) {
128         /* Shift back pos to the left, matching the right shifts above.
129          * The index of this word's least significant set bit provides
130          * the low-order bits.
131          */
132         assert(cur);
133         pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
134         hbi->cur[i] = cur & (cur - 1);
135 
136         /* Set up next level for iteration.  */
137         cur = hb->levels[i + 1][pos];
138     }
139 
140     hbi->pos = pos;
141     trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
142 
143     assert(cur);
144     return cur;
145 }
146 
147 int64_t hbitmap_iter_next(HBitmapIter *hbi)
148 {
149     unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
150             hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
151     int64_t item;
152 
153     if (cur == 0) {
154         cur = hbitmap_iter_skip_words(hbi);
155         if (cur == 0) {
156             return -1;
157         }
158     }
159 
160     /* The next call will resume work from the next bit.  */
161     hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
162     item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
163 
164     return item << hbi->granularity;
165 }
166 
167 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
168 {
169     unsigned i, bit;
170     uint64_t pos;
171 
172     hbi->hb = hb;
173     pos = first >> hb->granularity;
174     assert(pos < hb->size);
175     hbi->pos = pos >> BITS_PER_LEVEL;
176     hbi->granularity = hb->granularity;
177 
178     for (i = HBITMAP_LEVELS; i-- > 0; ) {
179         bit = pos & (BITS_PER_LONG - 1);
180         pos >>= BITS_PER_LEVEL;
181 
182         /* Drop bits representing items before first.  */
183         hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
184 
185         /* We have already added level i+1, so the lowest set bit has
186          * been processed.  Clear it.
187          */
188         if (i != HBITMAP_LEVELS - 1) {
189             hbi->cur[i] &= ~(1UL << bit);
190         }
191     }
192 }
193 
194 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count)
195 {
196     size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
197     unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
198     unsigned long cur = last_lev[pos];
199     unsigned start_bit_offset;
200     uint64_t end_bit, sz;
201     int64_t res;
202 
203     if (start >= hb->orig_size || count == 0) {
204         return -1;
205     }
206 
207     end_bit = count > hb->orig_size - start ?
208                 hb->size :
209                 ((start + count - 1) >> hb->granularity) + 1;
210     sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
211 
212     /* There may be some zero bits in @cur before @start. We are not interested
213      * in them, let's set them.
214      */
215     start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
216     cur |= (1UL << start_bit_offset) - 1;
217     assert((start >> hb->granularity) < hb->size);
218 
219     if (cur == (unsigned long)-1) {
220         do {
221             pos++;
222         } while (pos < sz && last_lev[pos] == (unsigned long)-1);
223 
224         if (pos >= sz) {
225             return -1;
226         }
227 
228         cur = last_lev[pos];
229     }
230 
231     res = (pos << BITS_PER_LEVEL) + ctol(cur);
232     if (res >= end_bit) {
233         return -1;
234     }
235 
236     res = res << hb->granularity;
237     if (res < start) {
238         assert(((start - res) >> hb->granularity) == 0);
239         return start;
240     }
241 
242     return res;
243 }
244 
245 bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start,
246                              uint64_t *count)
247 {
248     HBitmapIter hbi;
249     int64_t firt_dirty_off, area_end;
250     uint32_t granularity = 1UL << hb->granularity;
251     uint64_t end;
252 
253     if (*start >= hb->orig_size || *count == 0) {
254         return false;
255     }
256 
257     end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count;
258 
259     hbitmap_iter_init(&hbi, hb, *start);
260     firt_dirty_off = hbitmap_iter_next(&hbi);
261 
262     if (firt_dirty_off < 0 || firt_dirty_off >= end) {
263         return false;
264     }
265 
266     if (firt_dirty_off + granularity >= end) {
267         area_end = end;
268     } else {
269         area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity,
270                                      end - firt_dirty_off - granularity);
271         if (area_end < 0) {
272             area_end = end;
273         }
274     }
275 
276     if (firt_dirty_off > *start) {
277         *start = firt_dirty_off;
278     }
279     *count = area_end - *start;
280 
281     return true;
282 }
283 
284 bool hbitmap_empty(const HBitmap *hb)
285 {
286     return hb->count == 0;
287 }
288 
289 int hbitmap_granularity(const HBitmap *hb)
290 {
291     return hb->granularity;
292 }
293 
294 uint64_t hbitmap_count(const HBitmap *hb)
295 {
296     return hb->count << hb->granularity;
297 }
298 
299 /* Count the number of set bits between start and end, not accounting for
300  * the granularity.  Also an example of how to use hbitmap_iter_next_word.
301  */
302 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
303 {
304     HBitmapIter hbi;
305     uint64_t count = 0;
306     uint64_t end = last + 1;
307     unsigned long cur;
308     size_t pos;
309 
310     hbitmap_iter_init(&hbi, hb, start << hb->granularity);
311     for (;;) {
312         pos = hbitmap_iter_next_word(&hbi, &cur);
313         if (pos >= (end >> BITS_PER_LEVEL)) {
314             break;
315         }
316         count += ctpopl(cur);
317     }
318 
319     if (pos == (end >> BITS_PER_LEVEL)) {
320         /* Drop bits representing the END-th and subsequent items.  */
321         int bit = end & (BITS_PER_LONG - 1);
322         cur &= (1UL << bit) - 1;
323         count += ctpopl(cur);
324     }
325 
326     return count;
327 }
328 
329 /* Setting starts at the last layer and propagates up if an element
330  * changes.
331  */
332 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
333 {
334     unsigned long mask;
335     unsigned long old;
336 
337     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
338     assert(start <= last);
339 
340     mask = 2UL << (last & (BITS_PER_LONG - 1));
341     mask -= 1UL << (start & (BITS_PER_LONG - 1));
342     old = *elem;
343     *elem |= mask;
344     return old != *elem;
345 }
346 
347 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
348  * Returns true if at least one bit is changed. */
349 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
350                            uint64_t last)
351 {
352     size_t pos = start >> BITS_PER_LEVEL;
353     size_t lastpos = last >> BITS_PER_LEVEL;
354     bool changed = false;
355     size_t i;
356 
357     i = pos;
358     if (i < lastpos) {
359         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
360         changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
361         for (;;) {
362             start = next;
363             next += BITS_PER_LONG;
364             if (++i == lastpos) {
365                 break;
366             }
367             changed |= (hb->levels[level][i] == 0);
368             hb->levels[level][i] = ~0UL;
369         }
370     }
371     changed |= hb_set_elem(&hb->levels[level][i], start, last);
372 
373     /* If there was any change in this layer, we may have to update
374      * the one above.
375      */
376     if (level > 0 && changed) {
377         hb_set_between(hb, level - 1, pos, lastpos);
378     }
379     return changed;
380 }
381 
382 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
383 {
384     /* Compute range in the last layer.  */
385     uint64_t first, n;
386     uint64_t last = start + count - 1;
387 
388     trace_hbitmap_set(hb, start, count,
389                       start >> hb->granularity, last >> hb->granularity);
390 
391     first = start >> hb->granularity;
392     last >>= hb->granularity;
393     assert(last < hb->size);
394     n = last - first + 1;
395 
396     hb->count += n - hb_count_between(hb, first, last);
397     if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
398         hb->meta) {
399         hbitmap_set(hb->meta, start, count);
400     }
401 }
402 
403 /* Resetting works the other way round: propagate up if the new
404  * value is zero.
405  */
406 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
407 {
408     unsigned long mask;
409     bool blanked;
410 
411     assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
412     assert(start <= last);
413 
414     mask = 2UL << (last & (BITS_PER_LONG - 1));
415     mask -= 1UL << (start & (BITS_PER_LONG - 1));
416     blanked = *elem != 0 && ((*elem & ~mask) == 0);
417     *elem &= ~mask;
418     return blanked;
419 }
420 
421 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
422  * Returns true if at least one bit is changed. */
423 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
424                              uint64_t last)
425 {
426     size_t pos = start >> BITS_PER_LEVEL;
427     size_t lastpos = last >> BITS_PER_LEVEL;
428     bool changed = false;
429     size_t i;
430 
431     i = pos;
432     if (i < lastpos) {
433         uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
434 
435         /* Here we need a more complex test than when setting bits.  Even if
436          * something was changed, we must not blank bits in the upper level
437          * unless the lower-level word became entirely zero.  So, remove pos
438          * from the upper-level range if bits remain set.
439          */
440         if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
441             changed = true;
442         } else {
443             pos++;
444         }
445 
446         for (;;) {
447             start = next;
448             next += BITS_PER_LONG;
449             if (++i == lastpos) {
450                 break;
451             }
452             changed |= (hb->levels[level][i] != 0);
453             hb->levels[level][i] = 0UL;
454         }
455     }
456 
457     /* Same as above, this time for lastpos.  */
458     if (hb_reset_elem(&hb->levels[level][i], start, last)) {
459         changed = true;
460     } else {
461         lastpos--;
462     }
463 
464     if (level > 0 && changed) {
465         hb_reset_between(hb, level - 1, pos, lastpos);
466     }
467 
468     return changed;
469 
470 }
471 
472 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
473 {
474     /* Compute range in the last layer.  */
475     uint64_t first;
476     uint64_t last = start + count - 1;
477 
478     trace_hbitmap_reset(hb, start, count,
479                         start >> hb->granularity, last >> hb->granularity);
480 
481     first = start >> hb->granularity;
482     last >>= hb->granularity;
483     assert(last < hb->size);
484 
485     hb->count -= hb_count_between(hb, first, last);
486     if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
487         hb->meta) {
488         hbitmap_set(hb->meta, start, count);
489     }
490 }
491 
492 void hbitmap_reset_all(HBitmap *hb)
493 {
494     unsigned int i;
495 
496     /* Same as hbitmap_alloc() except for memset() instead of malloc() */
497     for (i = HBITMAP_LEVELS; --i >= 1; ) {
498         memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
499     }
500 
501     hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
502     hb->count = 0;
503 }
504 
505 bool hbitmap_is_serializable(const HBitmap *hb)
506 {
507     /* Every serialized chunk must be aligned to 64 bits so that endianness
508      * requirements can be fulfilled on both 64 bit and 32 bit hosts.
509      * We have hbitmap_serialization_align() which converts this
510      * alignment requirement from bitmap bits to items covered (e.g. sectors).
511      * That value is:
512      *    64 << hb->granularity
513      * Since this value must not exceed UINT64_MAX, hb->granularity must be
514      * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
515      *
516      * In order for hbitmap_serialization_align() to always return a
517      * meaningful value, bitmaps that are to be serialized must have a
518      * granularity of less than 58. */
519 
520     return hb->granularity < 58;
521 }
522 
523 bool hbitmap_get(const HBitmap *hb, uint64_t item)
524 {
525     /* Compute position and bit in the last layer.  */
526     uint64_t pos = item >> hb->granularity;
527     unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
528     assert(pos < hb->size);
529 
530     return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
531 }
532 
533 uint64_t hbitmap_serialization_align(const HBitmap *hb)
534 {
535     assert(hbitmap_is_serializable(hb));
536 
537     /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
538      * hosts. */
539     return UINT64_C(64) << hb->granularity;
540 }
541 
542 /* Start should be aligned to serialization granularity, chunk size should be
543  * aligned to serialization granularity too, except for last chunk.
544  */
545 static void serialization_chunk(const HBitmap *hb,
546                                 uint64_t start, uint64_t count,
547                                 unsigned long **first_el, uint64_t *el_count)
548 {
549     uint64_t last = start + count - 1;
550     uint64_t gran = hbitmap_serialization_align(hb);
551 
552     assert((start & (gran - 1)) == 0);
553     assert((last >> hb->granularity) < hb->size);
554     if ((last >> hb->granularity) != hb->size - 1) {
555         assert((count & (gran - 1)) == 0);
556     }
557 
558     start = (start >> hb->granularity) >> BITS_PER_LEVEL;
559     last = (last >> hb->granularity) >> BITS_PER_LEVEL;
560 
561     *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
562     *el_count = last - start + 1;
563 }
564 
565 uint64_t hbitmap_serialization_size(const HBitmap *hb,
566                                     uint64_t start, uint64_t count)
567 {
568     uint64_t el_count;
569     unsigned long *cur;
570 
571     if (!count) {
572         return 0;
573     }
574     serialization_chunk(hb, start, count, &cur, &el_count);
575 
576     return el_count * sizeof(unsigned long);
577 }
578 
579 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
580                             uint64_t start, uint64_t count)
581 {
582     uint64_t el_count;
583     unsigned long *cur, *end;
584 
585     if (!count) {
586         return;
587     }
588     serialization_chunk(hb, start, count, &cur, &el_count);
589     end = cur + el_count;
590 
591     while (cur != end) {
592         unsigned long el =
593             (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
594 
595         memcpy(buf, &el, sizeof(el));
596         buf += sizeof(el);
597         cur++;
598     }
599 }
600 
601 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
602                               uint64_t start, uint64_t count,
603                               bool finish)
604 {
605     uint64_t el_count;
606     unsigned long *cur, *end;
607 
608     if (!count) {
609         return;
610     }
611     serialization_chunk(hb, start, count, &cur, &el_count);
612     end = cur + el_count;
613 
614     while (cur != end) {
615         memcpy(cur, buf, sizeof(*cur));
616 
617         if (BITS_PER_LONG == 32) {
618             le32_to_cpus((uint32_t *)cur);
619         } else {
620             le64_to_cpus((uint64_t *)cur);
621         }
622 
623         buf += sizeof(unsigned long);
624         cur++;
625     }
626     if (finish) {
627         hbitmap_deserialize_finish(hb);
628     }
629 }
630 
631 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
632                                 bool finish)
633 {
634     uint64_t el_count;
635     unsigned long *first;
636 
637     if (!count) {
638         return;
639     }
640     serialization_chunk(hb, start, count, &first, &el_count);
641 
642     memset(first, 0, el_count * sizeof(unsigned long));
643     if (finish) {
644         hbitmap_deserialize_finish(hb);
645     }
646 }
647 
648 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
649                               bool finish)
650 {
651     uint64_t el_count;
652     unsigned long *first;
653 
654     if (!count) {
655         return;
656     }
657     serialization_chunk(hb, start, count, &first, &el_count);
658 
659     memset(first, 0xff, el_count * sizeof(unsigned long));
660     if (finish) {
661         hbitmap_deserialize_finish(hb);
662     }
663 }
664 
665 void hbitmap_deserialize_finish(HBitmap *bitmap)
666 {
667     int64_t i, size, prev_size;
668     int lev;
669 
670     /* restore levels starting from penultimate to zero level, assuming
671      * that the last level is ok */
672     size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
673     for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
674         prev_size = size;
675         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
676         memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
677 
678         for (i = 0; i < prev_size; ++i) {
679             if (bitmap->levels[lev + 1][i]) {
680                 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
681                     1UL << (i & (BITS_PER_LONG - 1));
682             }
683         }
684     }
685 
686     bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
687     bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
688 }
689 
690 void hbitmap_free(HBitmap *hb)
691 {
692     unsigned i;
693     assert(!hb->meta);
694     for (i = HBITMAP_LEVELS; i-- > 0; ) {
695         g_free(hb->levels[i]);
696     }
697     g_free(hb);
698 }
699 
700 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
701 {
702     HBitmap *hb = g_new0(struct HBitmap, 1);
703     unsigned i;
704 
705     hb->orig_size = size;
706 
707     assert(granularity >= 0 && granularity < 64);
708     size = (size + (1ULL << granularity) - 1) >> granularity;
709     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
710 
711     hb->size = size;
712     hb->granularity = granularity;
713     for (i = HBITMAP_LEVELS; i-- > 0; ) {
714         size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
715         hb->sizes[i] = size;
716         hb->levels[i] = g_new0(unsigned long, size);
717     }
718 
719     /* We necessarily have free bits in level 0 due to the definition
720      * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
721      * hbitmap_iter_skip_words.
722      */
723     assert(size == 1);
724     hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
725     return hb;
726 }
727 
728 void hbitmap_truncate(HBitmap *hb, uint64_t size)
729 {
730     bool shrink;
731     unsigned i;
732     uint64_t num_elements = size;
733     uint64_t old;
734 
735     /* Size comes in as logical elements, adjust for granularity. */
736     size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
737     assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
738     shrink = size < hb->size;
739 
740     /* bit sizes are identical; nothing to do. */
741     if (size == hb->size) {
742         return;
743     }
744 
745     /* If we're losing bits, let's clear those bits before we invalidate all of
746      * our invariants. This helps keep the bitcount consistent, and will prevent
747      * us from carrying around garbage bits beyond the end of the map.
748      */
749     if (shrink) {
750         /* Don't clear partial granularity groups;
751          * start at the first full one. */
752         uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
753         uint64_t fix_count = (hb->size << hb->granularity) - start;
754 
755         assert(fix_count);
756         hbitmap_reset(hb, start, fix_count);
757     }
758 
759     hb->size = size;
760     for (i = HBITMAP_LEVELS; i-- > 0; ) {
761         size = MAX(BITS_TO_LONGS(size), 1);
762         if (hb->sizes[i] == size) {
763             break;
764         }
765         old = hb->sizes[i];
766         hb->sizes[i] = size;
767         hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
768         if (!shrink) {
769             memset(&hb->levels[i][old], 0x00,
770                    (size - old) * sizeof(*hb->levels[i]));
771         }
772     }
773     if (hb->meta) {
774         hbitmap_truncate(hb->meta, hb->size << hb->granularity);
775     }
776 }
777 
778 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
779 {
780     return (a->size == b->size) && (a->granularity == b->granularity);
781 }
782 
783 /**
784  * Given HBitmaps A and B, let A := A (BITOR) B.
785  * Bitmap B will not be modified.
786  *
787  * @return true if the merge was successful,
788  *         false if it was not attempted.
789  */
790 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
791 {
792     int i;
793     uint64_t j;
794 
795     if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
796         return false;
797     }
798     assert(hbitmap_can_merge(b, result));
799 
800     if (hbitmap_count(b) == 0) {
801         return true;
802     }
803 
804     /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
805      * It may be possible to improve running times for sparsely populated maps
806      * by using hbitmap_iter_next, but this is suboptimal for dense maps.
807      */
808     for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
809         for (j = 0; j < a->sizes[i]; j++) {
810             result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
811         }
812     }
813 
814     /* Recompute the dirty count */
815     result->count = hb_count_between(result, 0, result->size - 1);
816 
817     return true;
818 }
819 
820 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
821 {
822     assert(!(chunk_size & (chunk_size - 1)));
823     assert(!hb->meta);
824     hb->meta = hbitmap_alloc(hb->size << hb->granularity,
825                              hb->granularity + ctz32(chunk_size));
826     return hb->meta;
827 }
828 
829 void hbitmap_free_meta(HBitmap *hb)
830 {
831     assert(hb->meta);
832     hbitmap_free(hb->meta);
833     hb->meta = NULL;
834 }
835 
836 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
837 {
838     size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
839     char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
840     char *hash = NULL;
841     qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
842 
843     return hash;
844 }
845