1 /* 2 * Hierarchical Bitmap Data Type 3 * 4 * Copyright Red Hat, Inc., 2012 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or 9 * later. See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/hbitmap.h" 14 #include "qemu/host-utils.h" 15 #include "trace.h" 16 #include "crypto/hash.h" 17 18 /* HBitmaps provides an array of bits. The bits are stored as usual in an 19 * array of unsigned longs, but HBitmap is also optimized to provide fast 20 * iteration over set bits; going from one bit to the next is O(logB n) 21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough 22 * that the number of levels is in fact fixed. 23 * 24 * In order to do this, it stacks multiple bitmaps with progressively coarser 25 * granularity; in all levels except the last, bit N is set iff the N-th 26 * unsigned long is nonzero in the immediately next level. When iteration 27 * completes on the last level it can examine the 2nd-last level to quickly 28 * skip entire words, and even do so recursively to skip blocks of 64 words or 29 * powers thereof (32 on 32-bit machines). 30 * 31 * Given an index in the bitmap, it can be split in group of bits like 32 * this (for the 64-bit case): 33 * 34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word 35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word 36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word 37 * 38 * So it is easy to move up simply by shifting the index right by 39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left 40 * similarly, and add the word index within the group. Iteration uses 41 * ffs (find first set bit) to find the next word to examine; this 42 * operation can be done in constant time in most current architectures. 43 * 44 * Setting or clearing a range of m bits on all levels, the work to perform 45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap. 46 * 47 * When iterating on a bitmap, each bit (on any level) is only visited 48 * once. Hence, The total cost of visiting a bitmap with m bits in it is 49 * the number of bits that are set in all bitmaps. Unless the bitmap is 50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized 51 * cost of advancing from one bit to the next is usually constant (worst case 52 * O(logB n) as in the non-amortized complexity). 53 */ 54 55 struct HBitmap { 56 /* Size of the bitmap, as requested in hbitmap_alloc. */ 57 uint64_t orig_size; 58 59 /* Number of total bits in the bottom level. */ 60 uint64_t size; 61 62 /* Number of set bits in the bottom level. */ 63 uint64_t count; 64 65 /* A scaling factor. Given a granularity of G, each bit in the bitmap will 66 * will actually represent a group of 2^G elements. Each operation on a 67 * range of bits first rounds the bits to determine which group they land 68 * in, and then affect the entire page; iteration will only visit the first 69 * bit of each group. Here is an example of operations in a size-16, 70 * granularity-1 HBitmap: 71 * 72 * initial state 00000000 73 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8) 74 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8) 75 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10) 76 * reset(start=5, count=5) 00000000 77 * 78 * From an implementation point of view, when setting or resetting bits, 79 * the bitmap will scale bit numbers right by this amount of bits. When 80 * iterating, the bitmap will scale bit numbers left by this amount of 81 * bits. 82 */ 83 int granularity; 84 85 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */ 86 HBitmap *meta; 87 88 /* A number of progressively less coarse bitmaps (i.e. level 0 is the 89 * coarsest). Each bit in level N represents a word in level N+1 that 90 * has a set bit, except the last level where each bit represents the 91 * actual bitmap. 92 * 93 * Note that all bitmaps have the same number of levels. Even a 1-bit 94 * bitmap will still allocate HBITMAP_LEVELS arrays. 95 */ 96 unsigned long *levels[HBITMAP_LEVELS]; 97 98 /* The length of each levels[] array. */ 99 uint64_t sizes[HBITMAP_LEVELS]; 100 }; 101 102 /* Advance hbi to the next nonzero word and return it. hbi->pos 103 * is updated. Returns zero if we reach the end of the bitmap. 104 */ 105 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi) 106 { 107 size_t pos = hbi->pos; 108 const HBitmap *hb = hbi->hb; 109 unsigned i = HBITMAP_LEVELS - 1; 110 111 unsigned long cur; 112 do { 113 i--; 114 pos >>= BITS_PER_LEVEL; 115 cur = hbi->cur[i] & hb->levels[i][pos]; 116 } while (cur == 0); 117 118 /* Check for end of iteration. We always use fewer than BITS_PER_LONG 119 * bits in the level 0 bitmap; thus we can repurpose the most significant 120 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures 121 * that the above loop ends even without an explicit check on i. 122 */ 123 124 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) { 125 return 0; 126 } 127 for (; i < HBITMAP_LEVELS - 1; i++) { 128 /* Shift back pos to the left, matching the right shifts above. 129 * The index of this word's least significant set bit provides 130 * the low-order bits. 131 */ 132 assert(cur); 133 pos = (pos << BITS_PER_LEVEL) + ctzl(cur); 134 hbi->cur[i] = cur & (cur - 1); 135 136 /* Set up next level for iteration. */ 137 cur = hb->levels[i + 1][pos]; 138 } 139 140 hbi->pos = pos; 141 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur); 142 143 assert(cur); 144 return cur; 145 } 146 147 int64_t hbitmap_iter_next(HBitmapIter *hbi) 148 { 149 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] & 150 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos]; 151 int64_t item; 152 153 if (cur == 0) { 154 cur = hbitmap_iter_skip_words(hbi); 155 if (cur == 0) { 156 return -1; 157 } 158 } 159 160 /* The next call will resume work from the next bit. */ 161 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1); 162 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur); 163 164 return item << hbi->granularity; 165 } 166 167 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first) 168 { 169 unsigned i, bit; 170 uint64_t pos; 171 172 hbi->hb = hb; 173 pos = first >> hb->granularity; 174 assert(pos < hb->size); 175 hbi->pos = pos >> BITS_PER_LEVEL; 176 hbi->granularity = hb->granularity; 177 178 for (i = HBITMAP_LEVELS; i-- > 0; ) { 179 bit = pos & (BITS_PER_LONG - 1); 180 pos >>= BITS_PER_LEVEL; 181 182 /* Drop bits representing items before first. */ 183 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1); 184 185 /* We have already added level i+1, so the lowest set bit has 186 * been processed. Clear it. 187 */ 188 if (i != HBITMAP_LEVELS - 1) { 189 hbi->cur[i] &= ~(1UL << bit); 190 } 191 } 192 } 193 194 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count) 195 { 196 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL; 197 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1]; 198 unsigned long cur = last_lev[pos]; 199 unsigned start_bit_offset; 200 uint64_t end_bit, sz; 201 int64_t res; 202 203 if (start >= hb->orig_size || count == 0) { 204 return -1; 205 } 206 207 end_bit = count > hb->orig_size - start ? 208 hb->size : 209 ((start + count - 1) >> hb->granularity) + 1; 210 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL; 211 212 /* There may be some zero bits in @cur before @start. We are not interested 213 * in them, let's set them. 214 */ 215 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1); 216 cur |= (1UL << start_bit_offset) - 1; 217 assert((start >> hb->granularity) < hb->size); 218 219 if (cur == (unsigned long)-1) { 220 do { 221 pos++; 222 } while (pos < sz && last_lev[pos] == (unsigned long)-1); 223 224 if (pos >= sz) { 225 return -1; 226 } 227 228 cur = last_lev[pos]; 229 } 230 231 res = (pos << BITS_PER_LEVEL) + ctol(cur); 232 if (res >= end_bit) { 233 return -1; 234 } 235 236 res = res << hb->granularity; 237 if (res < start) { 238 assert(((start - res) >> hb->granularity) == 0); 239 return start; 240 } 241 242 return res; 243 } 244 245 bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start, 246 uint64_t *count) 247 { 248 HBitmapIter hbi; 249 int64_t firt_dirty_off, area_end; 250 uint32_t granularity = 1UL << hb->granularity; 251 uint64_t end; 252 253 if (*start >= hb->orig_size || *count == 0) { 254 return false; 255 } 256 257 end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count; 258 259 hbitmap_iter_init(&hbi, hb, *start); 260 firt_dirty_off = hbitmap_iter_next(&hbi); 261 262 if (firt_dirty_off < 0 || firt_dirty_off >= end) { 263 return false; 264 } 265 266 if (firt_dirty_off + granularity >= end) { 267 area_end = end; 268 } else { 269 area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity, 270 end - firt_dirty_off - granularity); 271 if (area_end < 0) { 272 area_end = end; 273 } 274 } 275 276 if (firt_dirty_off > *start) { 277 *start = firt_dirty_off; 278 } 279 *count = area_end - *start; 280 281 return true; 282 } 283 284 bool hbitmap_empty(const HBitmap *hb) 285 { 286 return hb->count == 0; 287 } 288 289 int hbitmap_granularity(const HBitmap *hb) 290 { 291 return hb->granularity; 292 } 293 294 uint64_t hbitmap_count(const HBitmap *hb) 295 { 296 return hb->count << hb->granularity; 297 } 298 299 /* Count the number of set bits between start and end, not accounting for 300 * the granularity. Also an example of how to use hbitmap_iter_next_word. 301 */ 302 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last) 303 { 304 HBitmapIter hbi; 305 uint64_t count = 0; 306 uint64_t end = last + 1; 307 unsigned long cur; 308 size_t pos; 309 310 hbitmap_iter_init(&hbi, hb, start << hb->granularity); 311 for (;;) { 312 pos = hbitmap_iter_next_word(&hbi, &cur); 313 if (pos >= (end >> BITS_PER_LEVEL)) { 314 break; 315 } 316 count += ctpopl(cur); 317 } 318 319 if (pos == (end >> BITS_PER_LEVEL)) { 320 /* Drop bits representing the END-th and subsequent items. */ 321 int bit = end & (BITS_PER_LONG - 1); 322 cur &= (1UL << bit) - 1; 323 count += ctpopl(cur); 324 } 325 326 return count; 327 } 328 329 /* Setting starts at the last layer and propagates up if an element 330 * changes. 331 */ 332 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last) 333 { 334 unsigned long mask; 335 unsigned long old; 336 337 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 338 assert(start <= last); 339 340 mask = 2UL << (last & (BITS_PER_LONG - 1)); 341 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 342 old = *elem; 343 *elem |= mask; 344 return old != *elem; 345 } 346 347 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 348 * Returns true if at least one bit is changed. */ 349 static bool hb_set_between(HBitmap *hb, int level, uint64_t start, 350 uint64_t last) 351 { 352 size_t pos = start >> BITS_PER_LEVEL; 353 size_t lastpos = last >> BITS_PER_LEVEL; 354 bool changed = false; 355 size_t i; 356 357 i = pos; 358 if (i < lastpos) { 359 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 360 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1); 361 for (;;) { 362 start = next; 363 next += BITS_PER_LONG; 364 if (++i == lastpos) { 365 break; 366 } 367 changed |= (hb->levels[level][i] == 0); 368 hb->levels[level][i] = ~0UL; 369 } 370 } 371 changed |= hb_set_elem(&hb->levels[level][i], start, last); 372 373 /* If there was any change in this layer, we may have to update 374 * the one above. 375 */ 376 if (level > 0 && changed) { 377 hb_set_between(hb, level - 1, pos, lastpos); 378 } 379 return changed; 380 } 381 382 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count) 383 { 384 /* Compute range in the last layer. */ 385 uint64_t first, n; 386 uint64_t last = start + count - 1; 387 388 trace_hbitmap_set(hb, start, count, 389 start >> hb->granularity, last >> hb->granularity); 390 391 first = start >> hb->granularity; 392 last >>= hb->granularity; 393 assert(last < hb->size); 394 n = last - first + 1; 395 396 hb->count += n - hb_count_between(hb, first, last); 397 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) && 398 hb->meta) { 399 hbitmap_set(hb->meta, start, count); 400 } 401 } 402 403 /* Resetting works the other way round: propagate up if the new 404 * value is zero. 405 */ 406 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last) 407 { 408 unsigned long mask; 409 bool blanked; 410 411 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL)); 412 assert(start <= last); 413 414 mask = 2UL << (last & (BITS_PER_LONG - 1)); 415 mask -= 1UL << (start & (BITS_PER_LONG - 1)); 416 blanked = *elem != 0 && ((*elem & ~mask) == 0); 417 *elem &= ~mask; 418 return blanked; 419 } 420 421 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... 422 * Returns true if at least one bit is changed. */ 423 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start, 424 uint64_t last) 425 { 426 size_t pos = start >> BITS_PER_LEVEL; 427 size_t lastpos = last >> BITS_PER_LEVEL; 428 bool changed = false; 429 size_t i; 430 431 i = pos; 432 if (i < lastpos) { 433 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1; 434 435 /* Here we need a more complex test than when setting bits. Even if 436 * something was changed, we must not blank bits in the upper level 437 * unless the lower-level word became entirely zero. So, remove pos 438 * from the upper-level range if bits remain set. 439 */ 440 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) { 441 changed = true; 442 } else { 443 pos++; 444 } 445 446 for (;;) { 447 start = next; 448 next += BITS_PER_LONG; 449 if (++i == lastpos) { 450 break; 451 } 452 changed |= (hb->levels[level][i] != 0); 453 hb->levels[level][i] = 0UL; 454 } 455 } 456 457 /* Same as above, this time for lastpos. */ 458 if (hb_reset_elem(&hb->levels[level][i], start, last)) { 459 changed = true; 460 } else { 461 lastpos--; 462 } 463 464 if (level > 0 && changed) { 465 hb_reset_between(hb, level - 1, pos, lastpos); 466 } 467 468 return changed; 469 470 } 471 472 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count) 473 { 474 /* Compute range in the last layer. */ 475 uint64_t first; 476 uint64_t last = start + count - 1; 477 478 trace_hbitmap_reset(hb, start, count, 479 start >> hb->granularity, last >> hb->granularity); 480 481 first = start >> hb->granularity; 482 last >>= hb->granularity; 483 assert(last < hb->size); 484 485 hb->count -= hb_count_between(hb, first, last); 486 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) && 487 hb->meta) { 488 hbitmap_set(hb->meta, start, count); 489 } 490 } 491 492 void hbitmap_reset_all(HBitmap *hb) 493 { 494 unsigned int i; 495 496 /* Same as hbitmap_alloc() except for memset() instead of malloc() */ 497 for (i = HBITMAP_LEVELS; --i >= 1; ) { 498 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long)); 499 } 500 501 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1); 502 hb->count = 0; 503 } 504 505 bool hbitmap_is_serializable(const HBitmap *hb) 506 { 507 /* Every serialized chunk must be aligned to 64 bits so that endianness 508 * requirements can be fulfilled on both 64 bit and 32 bit hosts. 509 * We have hbitmap_serialization_align() which converts this 510 * alignment requirement from bitmap bits to items covered (e.g. sectors). 511 * That value is: 512 * 64 << hb->granularity 513 * Since this value must not exceed UINT64_MAX, hb->granularity must be 514 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64). 515 * 516 * In order for hbitmap_serialization_align() to always return a 517 * meaningful value, bitmaps that are to be serialized must have a 518 * granularity of less than 58. */ 519 520 return hb->granularity < 58; 521 } 522 523 bool hbitmap_get(const HBitmap *hb, uint64_t item) 524 { 525 /* Compute position and bit in the last layer. */ 526 uint64_t pos = item >> hb->granularity; 527 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1)); 528 assert(pos < hb->size); 529 530 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0; 531 } 532 533 uint64_t hbitmap_serialization_align(const HBitmap *hb) 534 { 535 assert(hbitmap_is_serializable(hb)); 536 537 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit 538 * hosts. */ 539 return UINT64_C(64) << hb->granularity; 540 } 541 542 /* Start should be aligned to serialization granularity, chunk size should be 543 * aligned to serialization granularity too, except for last chunk. 544 */ 545 static void serialization_chunk(const HBitmap *hb, 546 uint64_t start, uint64_t count, 547 unsigned long **first_el, uint64_t *el_count) 548 { 549 uint64_t last = start + count - 1; 550 uint64_t gran = hbitmap_serialization_align(hb); 551 552 assert((start & (gran - 1)) == 0); 553 assert((last >> hb->granularity) < hb->size); 554 if ((last >> hb->granularity) != hb->size - 1) { 555 assert((count & (gran - 1)) == 0); 556 } 557 558 start = (start >> hb->granularity) >> BITS_PER_LEVEL; 559 last = (last >> hb->granularity) >> BITS_PER_LEVEL; 560 561 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start]; 562 *el_count = last - start + 1; 563 } 564 565 uint64_t hbitmap_serialization_size(const HBitmap *hb, 566 uint64_t start, uint64_t count) 567 { 568 uint64_t el_count; 569 unsigned long *cur; 570 571 if (!count) { 572 return 0; 573 } 574 serialization_chunk(hb, start, count, &cur, &el_count); 575 576 return el_count * sizeof(unsigned long); 577 } 578 579 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf, 580 uint64_t start, uint64_t count) 581 { 582 uint64_t el_count; 583 unsigned long *cur, *end; 584 585 if (!count) { 586 return; 587 } 588 serialization_chunk(hb, start, count, &cur, &el_count); 589 end = cur + el_count; 590 591 while (cur != end) { 592 unsigned long el = 593 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur)); 594 595 memcpy(buf, &el, sizeof(el)); 596 buf += sizeof(el); 597 cur++; 598 } 599 } 600 601 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf, 602 uint64_t start, uint64_t count, 603 bool finish) 604 { 605 uint64_t el_count; 606 unsigned long *cur, *end; 607 608 if (!count) { 609 return; 610 } 611 serialization_chunk(hb, start, count, &cur, &el_count); 612 end = cur + el_count; 613 614 while (cur != end) { 615 memcpy(cur, buf, sizeof(*cur)); 616 617 if (BITS_PER_LONG == 32) { 618 le32_to_cpus((uint32_t *)cur); 619 } else { 620 le64_to_cpus((uint64_t *)cur); 621 } 622 623 buf += sizeof(unsigned long); 624 cur++; 625 } 626 if (finish) { 627 hbitmap_deserialize_finish(hb); 628 } 629 } 630 631 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count, 632 bool finish) 633 { 634 uint64_t el_count; 635 unsigned long *first; 636 637 if (!count) { 638 return; 639 } 640 serialization_chunk(hb, start, count, &first, &el_count); 641 642 memset(first, 0, el_count * sizeof(unsigned long)); 643 if (finish) { 644 hbitmap_deserialize_finish(hb); 645 } 646 } 647 648 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count, 649 bool finish) 650 { 651 uint64_t el_count; 652 unsigned long *first; 653 654 if (!count) { 655 return; 656 } 657 serialization_chunk(hb, start, count, &first, &el_count); 658 659 memset(first, 0xff, el_count * sizeof(unsigned long)); 660 if (finish) { 661 hbitmap_deserialize_finish(hb); 662 } 663 } 664 665 void hbitmap_deserialize_finish(HBitmap *bitmap) 666 { 667 int64_t i, size, prev_size; 668 int lev; 669 670 /* restore levels starting from penultimate to zero level, assuming 671 * that the last level is ok */ 672 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 673 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) { 674 prev_size = size; 675 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 676 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long)); 677 678 for (i = 0; i < prev_size; ++i) { 679 if (bitmap->levels[lev + 1][i]) { 680 bitmap->levels[lev][i >> BITS_PER_LEVEL] |= 681 1UL << (i & (BITS_PER_LONG - 1)); 682 } 683 } 684 } 685 686 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 687 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1); 688 } 689 690 void hbitmap_free(HBitmap *hb) 691 { 692 unsigned i; 693 assert(!hb->meta); 694 for (i = HBITMAP_LEVELS; i-- > 0; ) { 695 g_free(hb->levels[i]); 696 } 697 g_free(hb); 698 } 699 700 HBitmap *hbitmap_alloc(uint64_t size, int granularity) 701 { 702 HBitmap *hb = g_new0(struct HBitmap, 1); 703 unsigned i; 704 705 hb->orig_size = size; 706 707 assert(granularity >= 0 && granularity < 64); 708 size = (size + (1ULL << granularity) - 1) >> granularity; 709 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 710 711 hb->size = size; 712 hb->granularity = granularity; 713 for (i = HBITMAP_LEVELS; i-- > 0; ) { 714 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1); 715 hb->sizes[i] = size; 716 hb->levels[i] = g_new0(unsigned long, size); 717 } 718 719 /* We necessarily have free bits in level 0 due to the definition 720 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up 721 * hbitmap_iter_skip_words. 722 */ 723 assert(size == 1); 724 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1); 725 return hb; 726 } 727 728 void hbitmap_truncate(HBitmap *hb, uint64_t size) 729 { 730 bool shrink; 731 unsigned i; 732 uint64_t num_elements = size; 733 uint64_t old; 734 735 /* Size comes in as logical elements, adjust for granularity. */ 736 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity; 737 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE)); 738 shrink = size < hb->size; 739 740 /* bit sizes are identical; nothing to do. */ 741 if (size == hb->size) { 742 return; 743 } 744 745 /* If we're losing bits, let's clear those bits before we invalidate all of 746 * our invariants. This helps keep the bitcount consistent, and will prevent 747 * us from carrying around garbage bits beyond the end of the map. 748 */ 749 if (shrink) { 750 /* Don't clear partial granularity groups; 751 * start at the first full one. */ 752 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity); 753 uint64_t fix_count = (hb->size << hb->granularity) - start; 754 755 assert(fix_count); 756 hbitmap_reset(hb, start, fix_count); 757 } 758 759 hb->size = size; 760 for (i = HBITMAP_LEVELS; i-- > 0; ) { 761 size = MAX(BITS_TO_LONGS(size), 1); 762 if (hb->sizes[i] == size) { 763 break; 764 } 765 old = hb->sizes[i]; 766 hb->sizes[i] = size; 767 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long)); 768 if (!shrink) { 769 memset(&hb->levels[i][old], 0x00, 770 (size - old) * sizeof(*hb->levels[i])); 771 } 772 } 773 if (hb->meta) { 774 hbitmap_truncate(hb->meta, hb->size << hb->granularity); 775 } 776 } 777 778 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b) 779 { 780 return (a->size == b->size) && (a->granularity == b->granularity); 781 } 782 783 /** 784 * Given HBitmaps A and B, let A := A (BITOR) B. 785 * Bitmap B will not be modified. 786 * 787 * @return true if the merge was successful, 788 * false if it was not attempted. 789 */ 790 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result) 791 { 792 int i; 793 uint64_t j; 794 795 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) { 796 return false; 797 } 798 assert(hbitmap_can_merge(b, result)); 799 800 if (hbitmap_count(b) == 0) { 801 return true; 802 } 803 804 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant. 805 * It may be possible to improve running times for sparsely populated maps 806 * by using hbitmap_iter_next, but this is suboptimal for dense maps. 807 */ 808 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) { 809 for (j = 0; j < a->sizes[i]; j++) { 810 result->levels[i][j] = a->levels[i][j] | b->levels[i][j]; 811 } 812 } 813 814 /* Recompute the dirty count */ 815 result->count = hb_count_between(result, 0, result->size - 1); 816 817 return true; 818 } 819 820 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size) 821 { 822 assert(!(chunk_size & (chunk_size - 1))); 823 assert(!hb->meta); 824 hb->meta = hbitmap_alloc(hb->size << hb->granularity, 825 hb->granularity + ctz32(chunk_size)); 826 return hb->meta; 827 } 828 829 void hbitmap_free_meta(HBitmap *hb) 830 { 831 assert(hb->meta); 832 hbitmap_free(hb->meta); 833 hb->meta = NULL; 834 } 835 836 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp) 837 { 838 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long); 839 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1]; 840 char *hash = NULL; 841 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp); 842 843 return hash; 844 } 845