xref: /openbmc/qemu/util/cutils.c (revision ffe98631)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28 
29 #ifdef __FreeBSD__
30 #include <sys/sysctl.h>
31 #include <sys/user.h>
32 #endif
33 
34 #ifdef __NetBSD__
35 #include <sys/sysctl.h>
36 #endif
37 
38 #ifdef __HAIKU__
39 #include <kernel/image.h>
40 #endif
41 
42 #ifdef __APPLE__
43 #include <mach-o/dyld.h>
44 #endif
45 
46 #ifdef G_OS_WIN32
47 #include <pathcch.h>
48 #include <wchar.h>
49 #endif
50 
51 #include "qemu/ctype.h"
52 #include "qemu/cutils.h"
53 #include "qemu/error-report.h"
54 
55 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
56 {
57     int len = qemu_strnlen(str, buf_size);
58     memcpy(buf, str, len);
59     memset(buf + len, pad, buf_size - len);
60 }
61 
62 void pstrcpy(char *buf, int buf_size, const char *str)
63 {
64     int c;
65     char *q = buf;
66 
67     if (buf_size <= 0)
68         return;
69 
70     for(;;) {
71         c = *str++;
72         if (c == 0 || q >= buf + buf_size - 1)
73             break;
74         *q++ = c;
75     }
76     *q = '\0';
77 }
78 
79 /* strcat and truncate. */
80 char *pstrcat(char *buf, int buf_size, const char *s)
81 {
82     int len;
83     len = strlen(buf);
84     if (len < buf_size)
85         pstrcpy(buf + len, buf_size - len, s);
86     return buf;
87 }
88 
89 int strstart(const char *str, const char *val, const char **ptr)
90 {
91     const char *p, *q;
92     p = str;
93     q = val;
94     while (*q != '\0') {
95         if (*p != *q)
96             return 0;
97         p++;
98         q++;
99     }
100     if (ptr)
101         *ptr = p;
102     return 1;
103 }
104 
105 int stristart(const char *str, const char *val, const char **ptr)
106 {
107     const char *p, *q;
108     p = str;
109     q = val;
110     while (*q != '\0') {
111         if (qemu_toupper(*p) != qemu_toupper(*q))
112             return 0;
113         p++;
114         q++;
115     }
116     if (ptr)
117         *ptr = p;
118     return 1;
119 }
120 
121 /* XXX: use host strnlen if available ? */
122 int qemu_strnlen(const char *s, int max_len)
123 {
124     int i;
125 
126     for(i = 0; i < max_len; i++) {
127         if (s[i] == '\0') {
128             break;
129         }
130     }
131     return i;
132 }
133 
134 char *qemu_strsep(char **input, const char *delim)
135 {
136     char *result = *input;
137     if (result != NULL) {
138         char *p;
139 
140         for (p = result; *p != '\0'; p++) {
141             if (strchr(delim, *p)) {
142                 break;
143             }
144         }
145         if (*p == '\0') {
146             *input = NULL;
147         } else {
148             *p = '\0';
149             *input = p + 1;
150         }
151     }
152     return result;
153 }
154 
155 time_t mktimegm(struct tm *tm)
156 {
157     time_t t;
158     int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
159     if (m < 3) {
160         m += 12;
161         y--;
162     }
163     t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
164                  y / 400 - 719469);
165     t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
166     return t;
167 }
168 
169 static int64_t suffix_mul(char suffix, int64_t unit)
170 {
171     switch (qemu_toupper(suffix)) {
172     case 'B':
173         return 1;
174     case 'K':
175         return unit;
176     case 'M':
177         return unit * unit;
178     case 'G':
179         return unit * unit * unit;
180     case 'T':
181         return unit * unit * unit * unit;
182     case 'P':
183         return unit * unit * unit * unit * unit;
184     case 'E':
185         return unit * unit * unit * unit * unit * unit;
186     }
187     return -1;
188 }
189 
190 /*
191  * Convert size string to bytes.
192  *
193  * The size parsing supports the following syntaxes
194  * - 12345 - decimal, scale determined by @default_suffix and @unit
195  * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
196  * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
197  *   fractional portion is truncated to byte
198  * - 0x7fEE - hexadecimal, unit determined by @default_suffix
199  *
200  * The following are intentionally not supported
201  * - hex with scaling suffix, such as 0x20M
202  * - octal, such as 08
203  * - fractional hex, such as 0x1.8
204  * - floating point exponents, such as 1e3
205  *
206  * The end pointer will be returned in *end, if not NULL.  If there is
207  * no fraction, the input can be decimal or hexadecimal; if there is a
208  * fraction, then the input must be decimal and there must be a suffix
209  * (possibly by @default_suffix) larger than Byte, and the fractional
210  * portion may suffer from precision loss or rounding.  The input must
211  * be positive.
212  *
213  * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
214  * other error (with *@end left unchanged).
215  */
216 static int do_strtosz(const char *nptr, const char **end,
217                       const char default_suffix, int64_t unit,
218                       uint64_t *result)
219 {
220     int retval;
221     const char *endptr, *f;
222     unsigned char c;
223     uint64_t val, valf = 0;
224     int64_t mul;
225 
226     /* Parse integral portion as decimal. */
227     retval = qemu_strtou64(nptr, &endptr, 10, &val);
228     if (retval) {
229         goto out;
230     }
231     if (memchr(nptr, '-', endptr - nptr) != NULL) {
232         endptr = nptr;
233         retval = -EINVAL;
234         goto out;
235     }
236     if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
237         /* Input looks like hex; reparse, and insist on no fraction or suffix. */
238         retval = qemu_strtou64(nptr, &endptr, 16, &val);
239         if (retval) {
240             goto out;
241         }
242         if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) {
243             endptr = nptr;
244             retval = -EINVAL;
245             goto out;
246         }
247     } else if (*endptr == '.') {
248         /*
249          * Input looks like a fraction.  Make sure even 1.k works
250          * without fractional digits.  If we see an exponent, treat
251          * the entire input as invalid instead.
252          */
253         double fraction;
254 
255         f = endptr;
256         retval = qemu_strtod_finite(f, &endptr, &fraction);
257         if (retval) {
258             endptr++;
259         } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
260             endptr = nptr;
261             retval = -EINVAL;
262             goto out;
263         } else {
264             /* Extract into a 64-bit fixed-point fraction. */
265             valf = (uint64_t)(fraction * 0x1p64);
266         }
267     }
268     c = *endptr;
269     mul = suffix_mul(c, unit);
270     if (mul > 0) {
271         endptr++;
272     } else {
273         mul = suffix_mul(default_suffix, unit);
274         assert(mul > 0);
275     }
276     if (mul == 1) {
277         /* When a fraction is present, a scale is required. */
278         if (valf != 0) {
279             endptr = nptr;
280             retval = -EINVAL;
281             goto out;
282         }
283     } else {
284         uint64_t valh, tmp;
285 
286         /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
287         mulu64(&val, &valh, val, mul);
288         mulu64(&valf, &tmp, valf, mul);
289         val += tmp;
290         valh += val < tmp;
291 
292         /* Round 0.5 upward. */
293         tmp = valf >> 63;
294         val += tmp;
295         valh += val < tmp;
296 
297         /* Report overflow. */
298         if (valh != 0) {
299             retval = -ERANGE;
300             goto out;
301         }
302     }
303 
304     retval = 0;
305 
306 out:
307     if (end) {
308         *end = endptr;
309     } else if (*endptr) {
310         retval = -EINVAL;
311     }
312     if (retval == 0) {
313         *result = val;
314     }
315 
316     return retval;
317 }
318 
319 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
320 {
321     return do_strtosz(nptr, end, 'B', 1024, result);
322 }
323 
324 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
325 {
326     return do_strtosz(nptr, end, 'M', 1024, result);
327 }
328 
329 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
330 {
331     return do_strtosz(nptr, end, 'B', 1000, result);
332 }
333 
334 /**
335  * Helper function for error checking after strtol() and the like
336  */
337 static int check_strtox_error(const char *nptr, char *ep,
338                               const char **endptr, bool check_zero,
339                               int libc_errno)
340 {
341     assert(ep >= nptr);
342 
343     /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
344     if (check_zero && ep == nptr && libc_errno == 0) {
345         char *tmp;
346 
347         errno = 0;
348         if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
349             (*tmp == 'x' || *tmp == 'X')) {
350             ep = tmp;
351         }
352     }
353 
354     if (endptr) {
355         *endptr = ep;
356     }
357 
358     /* Turn "no conversion" into an error */
359     if (libc_errno == 0 && ep == nptr) {
360         return -EINVAL;
361     }
362 
363     /* Fail when we're expected to consume the string, but didn't */
364     if (!endptr && *ep) {
365         return -EINVAL;
366     }
367 
368     return -libc_errno;
369 }
370 
371 /**
372  * Convert string @nptr to an integer, and store it in @result.
373  *
374  * This is a wrapper around strtol() that is harder to misuse.
375  * Semantics of @nptr, @endptr, @base match strtol() with differences
376  * noted below.
377  *
378  * @nptr may be null, and no conversion is performed then.
379  *
380  * If no conversion is performed, store @nptr in *@endptr and return
381  * -EINVAL.
382  *
383  * If @endptr is null, and the string isn't fully converted, return
384  * -EINVAL.  This is the case when the pointer that would be stored in
385  * a non-null @endptr points to a character other than '\0'.
386  *
387  * If the conversion overflows @result, store INT_MAX in @result,
388  * and return -ERANGE.
389  *
390  * If the conversion underflows @result, store INT_MIN in @result,
391  * and return -ERANGE.
392  *
393  * Else store the converted value in @result, and return zero.
394  */
395 int qemu_strtoi(const char *nptr, const char **endptr, int base,
396                 int *result)
397 {
398     char *ep;
399     long long lresult;
400 
401     assert((unsigned) base <= 36 && base != 1);
402     if (!nptr) {
403         if (endptr) {
404             *endptr = nptr;
405         }
406         return -EINVAL;
407     }
408 
409     errno = 0;
410     lresult = strtoll(nptr, &ep, base);
411     if (lresult < INT_MIN) {
412         *result = INT_MIN;
413         errno = ERANGE;
414     } else if (lresult > INT_MAX) {
415         *result = INT_MAX;
416         errno = ERANGE;
417     } else {
418         *result = lresult;
419     }
420     return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
421 }
422 
423 /**
424  * Convert string @nptr to an unsigned integer, and store it in @result.
425  *
426  * This is a wrapper around strtoul() that is harder to misuse.
427  * Semantics of @nptr, @endptr, @base match strtoul() with differences
428  * noted below.
429  *
430  * @nptr may be null, and no conversion is performed then.
431  *
432  * If no conversion is performed, store @nptr in *@endptr and return
433  * -EINVAL.
434  *
435  * If @endptr is null, and the string isn't fully converted, return
436  * -EINVAL.  This is the case when the pointer that would be stored in
437  * a non-null @endptr points to a character other than '\0'.
438  *
439  * If the conversion overflows @result, store UINT_MAX in @result,
440  * and return -ERANGE.
441  *
442  * Else store the converted value in @result, and return zero.
443  *
444  * Note that a number with a leading minus sign gets converted without
445  * the minus sign, checked for overflow (see above), then negated (in
446  * @result's type).  This is exactly how strtoul() works.
447  */
448 int qemu_strtoui(const char *nptr, const char **endptr, int base,
449                  unsigned int *result)
450 {
451     char *ep;
452     long long lresult;
453 
454     assert((unsigned) base <= 36 && base != 1);
455     if (!nptr) {
456         if (endptr) {
457             *endptr = nptr;
458         }
459         return -EINVAL;
460     }
461 
462     errno = 0;
463     lresult = strtoull(nptr, &ep, base);
464 
465     /* Windows returns 1 for negative out-of-range values.  */
466     if (errno == ERANGE) {
467         *result = -1;
468     } else {
469         if (lresult > UINT_MAX) {
470             *result = UINT_MAX;
471             errno = ERANGE;
472         } else if (lresult < INT_MIN) {
473             *result = UINT_MAX;
474             errno = ERANGE;
475         } else {
476             *result = lresult;
477         }
478     }
479     return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
480 }
481 
482 /**
483  * Convert string @nptr to a long integer, and store it in @result.
484  *
485  * This is a wrapper around strtol() that is harder to misuse.
486  * Semantics of @nptr, @endptr, @base match strtol() with differences
487  * noted below.
488  *
489  * @nptr may be null, and no conversion is performed then.
490  *
491  * If no conversion is performed, store @nptr in *@endptr and return
492  * -EINVAL.
493  *
494  * If @endptr is null, and the string isn't fully converted, return
495  * -EINVAL.  This is the case when the pointer that would be stored in
496  * a non-null @endptr points to a character other than '\0'.
497  *
498  * If the conversion overflows @result, store LONG_MAX in @result,
499  * and return -ERANGE.
500  *
501  * If the conversion underflows @result, store LONG_MIN in @result,
502  * and return -ERANGE.
503  *
504  * Else store the converted value in @result, and return zero.
505  */
506 int qemu_strtol(const char *nptr, const char **endptr, int base,
507                 long *result)
508 {
509     char *ep;
510 
511     assert((unsigned) base <= 36 && base != 1);
512     if (!nptr) {
513         if (endptr) {
514             *endptr = nptr;
515         }
516         return -EINVAL;
517     }
518 
519     errno = 0;
520     *result = strtol(nptr, &ep, base);
521     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
522 }
523 
524 /**
525  * Convert string @nptr to an unsigned long, and store it in @result.
526  *
527  * This is a wrapper around strtoul() that is harder to misuse.
528  * Semantics of @nptr, @endptr, @base match strtoul() with differences
529  * noted below.
530  *
531  * @nptr may be null, and no conversion is performed then.
532  *
533  * If no conversion is performed, store @nptr in *@endptr and return
534  * -EINVAL.
535  *
536  * If @endptr is null, and the string isn't fully converted, return
537  * -EINVAL.  This is the case when the pointer that would be stored in
538  * a non-null @endptr points to a character other than '\0'.
539  *
540  * If the conversion overflows @result, store ULONG_MAX in @result,
541  * and return -ERANGE.
542  *
543  * Else store the converted value in @result, and return zero.
544  *
545  * Note that a number with a leading minus sign gets converted without
546  * the minus sign, checked for overflow (see above), then negated (in
547  * @result's type).  This is exactly how strtoul() works.
548  */
549 int qemu_strtoul(const char *nptr, const char **endptr, int base,
550                  unsigned long *result)
551 {
552     char *ep;
553 
554     assert((unsigned) base <= 36 && base != 1);
555     if (!nptr) {
556         if (endptr) {
557             *endptr = nptr;
558         }
559         return -EINVAL;
560     }
561 
562     errno = 0;
563     *result = strtoul(nptr, &ep, base);
564     /* Windows returns 1 for negative out-of-range values.  */
565     if (errno == ERANGE) {
566         *result = -1;
567     }
568     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
569 }
570 
571 /**
572  * Convert string @nptr to an int64_t.
573  *
574  * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
575  * and INT64_MIN on underflow.
576  */
577 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
578                  int64_t *result)
579 {
580     char *ep;
581 
582     assert((unsigned) base <= 36 && base != 1);
583     if (!nptr) {
584         if (endptr) {
585             *endptr = nptr;
586         }
587         return -EINVAL;
588     }
589 
590     /* This assumes int64_t is long long TODO relax */
591     QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
592     errno = 0;
593     *result = strtoll(nptr, &ep, base);
594     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
595 }
596 
597 /**
598  * Convert string @nptr to an uint64_t.
599  *
600  * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
601  */
602 int qemu_strtou64(const char *nptr, const char **endptr, int base,
603                   uint64_t *result)
604 {
605     char *ep;
606 
607     assert((unsigned) base <= 36 && base != 1);
608     if (!nptr) {
609         if (endptr) {
610             *endptr = nptr;
611         }
612         return -EINVAL;
613     }
614 
615     /* This assumes uint64_t is unsigned long long TODO relax */
616     QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
617     errno = 0;
618     *result = strtoull(nptr, &ep, base);
619     /* Windows returns 1 for negative out-of-range values.  */
620     if (errno == ERANGE) {
621         *result = -1;
622     }
623     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
624 }
625 
626 /**
627  * Convert string @nptr to a double.
628   *
629  * This is a wrapper around strtod() that is harder to misuse.
630  * Semantics of @nptr and @endptr match strtod() with differences
631  * noted below.
632  *
633  * @nptr may be null, and no conversion is performed then.
634  *
635  * If no conversion is performed, store @nptr in *@endptr and return
636  * -EINVAL.
637  *
638  * If @endptr is null, and the string isn't fully converted, return
639  * -EINVAL. This is the case when the pointer that would be stored in
640  * a non-null @endptr points to a character other than '\0'.
641  *
642  * If the conversion overflows, store +/-HUGE_VAL in @result, depending
643  * on the sign, and return -ERANGE.
644  *
645  * If the conversion underflows, store +/-0.0 in @result, depending on the
646  * sign, and return -ERANGE.
647  *
648  * Else store the converted value in @result, and return zero.
649  */
650 int qemu_strtod(const char *nptr, const char **endptr, double *result)
651 {
652     char *ep;
653 
654     if (!nptr) {
655         if (endptr) {
656             *endptr = nptr;
657         }
658         return -EINVAL;
659     }
660 
661     errno = 0;
662     *result = strtod(nptr, &ep);
663     return check_strtox_error(nptr, ep, endptr, false, errno);
664 }
665 
666 /**
667  * Convert string @nptr to a finite double.
668  *
669  * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
670  * with -EINVAL and no conversion is performed.
671  */
672 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
673 {
674     double tmp;
675     int ret;
676 
677     ret = qemu_strtod(nptr, endptr, &tmp);
678     if (!ret && !isfinite(tmp)) {
679         if (endptr) {
680             *endptr = nptr;
681         }
682         ret = -EINVAL;
683     }
684 
685     if (ret != -EINVAL) {
686         *result = tmp;
687     }
688     return ret;
689 }
690 
691 /**
692  * Searches for the first occurrence of 'c' in 's', and returns a pointer
693  * to the trailing null byte if none was found.
694  */
695 #ifndef HAVE_STRCHRNUL
696 const char *qemu_strchrnul(const char *s, int c)
697 {
698     const char *e = strchr(s, c);
699     if (!e) {
700         e = s + strlen(s);
701     }
702     return e;
703 }
704 #endif
705 
706 /**
707  * parse_uint:
708  *
709  * @s: String to parse
710  * @value: Destination for parsed integer value
711  * @endptr: Destination for pointer to first character not consumed
712  * @base: integer base, between 2 and 36 inclusive, or 0
713  *
714  * Parse unsigned integer
715  *
716  * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
717  * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
718  *
719  * If @s is null, or @base is invalid, or @s doesn't start with an
720  * integer in the syntax above, set *@value to 0, *@endptr to @s, and
721  * return -EINVAL.
722  *
723  * Set *@endptr to point right beyond the parsed integer (even if the integer
724  * overflows or is negative, all digits will be parsed and *@endptr will
725  * point right beyond them).
726  *
727  * If the integer is negative, set *@value to 0, and return -ERANGE.
728  *
729  * If the integer overflows unsigned long long, set *@value to
730  * ULLONG_MAX, and return -ERANGE.
731  *
732  * Else, set *@value to the parsed integer, and return 0.
733  */
734 int parse_uint(const char *s, unsigned long long *value, char **endptr,
735                int base)
736 {
737     int r = 0;
738     char *endp = (char *)s;
739     unsigned long long val = 0;
740 
741     assert((unsigned) base <= 36 && base != 1);
742     if (!s) {
743         r = -EINVAL;
744         goto out;
745     }
746 
747     errno = 0;
748     val = strtoull(s, &endp, base);
749     if (errno) {
750         r = -errno;
751         goto out;
752     }
753 
754     if (endp == s) {
755         r = -EINVAL;
756         goto out;
757     }
758 
759     /* make sure we reject negative numbers: */
760     while (qemu_isspace(*s)) {
761         s++;
762     }
763     if (*s == '-') {
764         val = 0;
765         r = -ERANGE;
766         goto out;
767     }
768 
769 out:
770     *value = val;
771     *endptr = endp;
772     return r;
773 }
774 
775 /**
776  * parse_uint_full:
777  *
778  * @s: String to parse
779  * @value: Destination for parsed integer value
780  * @base: integer base, between 2 and 36 inclusive, or 0
781  *
782  * Parse unsigned integer from entire string
783  *
784  * Have the same behavior of parse_uint(), but with an additional check
785  * for additional data after the parsed number. If extra characters are present
786  * after the parsed number, the function will return -EINVAL, and *@v will
787  * be set to 0.
788  */
789 int parse_uint_full(const char *s, unsigned long long *value, int base)
790 {
791     char *endp;
792     int r;
793 
794     r = parse_uint(s, value, &endp, base);
795     if (r < 0) {
796         return r;
797     }
798     if (*endp) {
799         *value = 0;
800         return -EINVAL;
801     }
802 
803     return 0;
804 }
805 
806 int qemu_parse_fd(const char *param)
807 {
808     long fd;
809     char *endptr;
810 
811     errno = 0;
812     fd = strtol(param, &endptr, 10);
813     if (param == endptr /* no conversion performed */                    ||
814         errno != 0      /* not representable as long; possibly others */ ||
815         *endptr != '\0' /* final string not empty */                     ||
816         fd < 0          /* invalid as file descriptor */                 ||
817         fd > INT_MAX    /* not representable as int */) {
818         return -1;
819     }
820     return fd;
821 }
822 
823 /*
824  * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
825  * Input is limited to 14-bit numbers
826  */
827 int uleb128_encode_small(uint8_t *out, uint32_t n)
828 {
829     g_assert(n <= 0x3fff);
830     if (n < 0x80) {
831         *out = n;
832         return 1;
833     } else {
834         *out++ = (n & 0x7f) | 0x80;
835         *out = n >> 7;
836         return 2;
837     }
838 }
839 
840 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
841 {
842     if (!(*in & 0x80)) {
843         *n = *in;
844         return 1;
845     } else {
846         *n = *in++ & 0x7f;
847         /* we exceed 14 bit number */
848         if (*in & 0x80) {
849             return -1;
850         }
851         *n |= *in << 7;
852         return 2;
853     }
854 }
855 
856 /*
857  * helper to parse debug environment variables
858  */
859 int parse_debug_env(const char *name, int max, int initial)
860 {
861     char *debug_env = getenv(name);
862     char *inv = NULL;
863     long debug;
864 
865     if (!debug_env) {
866         return initial;
867     }
868     errno = 0;
869     debug = strtol(debug_env, &inv, 10);
870     if (inv == debug_env) {
871         return initial;
872     }
873     if (debug < 0 || debug > max || errno != 0) {
874         warn_report("%s not in [0, %d]", name, max);
875         return initial;
876     }
877     return debug;
878 }
879 
880 const char *si_prefix(unsigned int exp10)
881 {
882     static const char *prefixes[] = {
883         "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E"
884     };
885 
886     exp10 += 18;
887     assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes));
888     return prefixes[exp10 / 3];
889 }
890 
891 const char *iec_binary_prefix(unsigned int exp2)
892 {
893     static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
894 
895     assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes));
896     return prefixes[exp2 / 10];
897 }
898 
899 /*
900  * Return human readable string for size @val.
901  * @val can be anything that uint64_t allows (no more than "16 EiB").
902  * Use IEC binary units like KiB, MiB, and so forth.
903  * Caller is responsible for passing it to g_free().
904  */
905 char *size_to_str(uint64_t val)
906 {
907     uint64_t div;
908     int i;
909 
910     /*
911      * The exponent (returned in i) minus one gives us
912      * floor(log2(val * 1024 / 1000).  The correction makes us
913      * switch to the higher power when the integer part is >= 1000.
914      * (see e41b509d68afb1f for more info)
915      */
916     frexp(val / (1000.0 / 1024.0), &i);
917     i = (i - 1) / 10 * 10;
918     div = 1ULL << i;
919 
920     return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i));
921 }
922 
923 char *freq_to_str(uint64_t freq_hz)
924 {
925     double freq = freq_hz;
926     size_t exp10 = 0;
927 
928     while (freq >= 1000.0) {
929         freq /= 1000.0;
930         exp10 += 3;
931     }
932 
933     return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10));
934 }
935 
936 int qemu_pstrcmp0(const char **str1, const char **str2)
937 {
938     return g_strcmp0(*str1, *str2);
939 }
940 
941 static inline bool starts_with_prefix(const char *dir)
942 {
943     size_t prefix_len = strlen(CONFIG_PREFIX);
944     return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
945         (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
946 }
947 
948 /* Return the next path component in dir, and store its length in *p_len.  */
949 static inline const char *next_component(const char *dir, int *p_len)
950 {
951     int len;
952     while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
953            (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
954         dir++;
955     }
956     len = 0;
957     while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
958         len++;
959     }
960     *p_len = len;
961     return dir;
962 }
963 
964 static const char *exec_dir;
965 
966 void qemu_init_exec_dir(const char *argv0)
967 {
968 #ifdef G_OS_WIN32
969     char *p;
970     char buf[MAX_PATH];
971     DWORD len;
972 
973     if (exec_dir) {
974         return;
975     }
976 
977     len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
978     if (len == 0) {
979         return;
980     }
981 
982     buf[len] = 0;
983     p = buf + len - 1;
984     while (p != buf && *p != '\\') {
985         p--;
986     }
987     *p = 0;
988     if (access(buf, R_OK) == 0) {
989         exec_dir = g_strdup(buf);
990     } else {
991         exec_dir = CONFIG_BINDIR;
992     }
993 #else
994     char *p = NULL;
995     char buf[PATH_MAX];
996 
997     if (exec_dir) {
998         return;
999     }
1000 
1001 #if defined(__linux__)
1002     {
1003         int len;
1004         len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
1005         if (len > 0) {
1006             buf[len] = 0;
1007             p = buf;
1008         }
1009     }
1010 #elif defined(__FreeBSD__) \
1011       || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME))
1012     {
1013 #if defined(__FreeBSD__)
1014         static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1015 #else
1016         static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1017 #endif
1018         size_t len = sizeof(buf) - 1;
1019 
1020         *buf = '\0';
1021         if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) &&
1022             *buf) {
1023             buf[sizeof(buf) - 1] = '\0';
1024             p = buf;
1025         }
1026     }
1027 #elif defined(__APPLE__)
1028     {
1029         char fpath[PATH_MAX];
1030         uint32_t len = sizeof(fpath);
1031         if (_NSGetExecutablePath(fpath, &len) == 0) {
1032             p = realpath(fpath, buf);
1033             if (!p) {
1034                 return;
1035             }
1036         }
1037     }
1038 #elif defined(__HAIKU__)
1039     {
1040         image_info ii;
1041         int32_t c = 0;
1042 
1043         *buf = '\0';
1044         while (get_next_image_info(0, &c, &ii) == B_OK) {
1045             if (ii.type == B_APP_IMAGE) {
1046                 strncpy(buf, ii.name, sizeof(buf));
1047                 buf[sizeof(buf) - 1] = 0;
1048                 p = buf;
1049                 break;
1050             }
1051         }
1052     }
1053 #endif
1054     /* If we don't have any way of figuring out the actual executable
1055        location then try argv[0].  */
1056     if (!p && argv0) {
1057         p = realpath(argv0, buf);
1058     }
1059     if (p) {
1060         exec_dir = g_path_get_dirname(p);
1061     } else {
1062         exec_dir = CONFIG_BINDIR;
1063     }
1064 #endif
1065 }
1066 
1067 const char *qemu_get_exec_dir(void)
1068 {
1069     return exec_dir;
1070 }
1071 
1072 char *get_relocated_path(const char *dir)
1073 {
1074     size_t prefix_len = strlen(CONFIG_PREFIX);
1075     const char *bindir = CONFIG_BINDIR;
1076     const char *exec_dir = qemu_get_exec_dir();
1077     GString *result;
1078     int len_dir, len_bindir;
1079 
1080     /* Fail if qemu_init_exec_dir was not called.  */
1081     assert(exec_dir[0]);
1082 
1083     result = g_string_new(exec_dir);
1084     g_string_append(result, "/qemu-bundle");
1085     if (access(result->str, R_OK) == 0) {
1086 #ifdef G_OS_WIN32
1087         size_t size = mbsrtowcs(NULL, &dir, 0, &(mbstate_t){0}) + 1;
1088         PWSTR wdir = g_new(WCHAR, size);
1089         mbsrtowcs(wdir, &dir, size, &(mbstate_t){0});
1090 
1091         PCWSTR wdir_skipped_root;
1092         PathCchSkipRoot(wdir, &wdir_skipped_root);
1093 
1094         size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0});
1095         char *cursor = result->str + result->len;
1096         g_string_set_size(result, result->len + size);
1097         wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0});
1098         g_free(wdir);
1099 #else
1100         g_string_append(result, dir);
1101 #endif
1102     } else if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
1103         g_string_assign(result, dir);
1104     } else {
1105         g_string_assign(result, exec_dir);
1106 
1107         /* Advance over common components.  */
1108         len_dir = len_bindir = prefix_len;
1109         do {
1110             dir += len_dir;
1111             bindir += len_bindir;
1112             dir = next_component(dir, &len_dir);
1113             bindir = next_component(bindir, &len_bindir);
1114         } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1115 
1116         /* Ascend from bindir to the common prefix with dir.  */
1117         while (len_bindir) {
1118             bindir += len_bindir;
1119             g_string_append(result, "/..");
1120             bindir = next_component(bindir, &len_bindir);
1121         }
1122 
1123         if (*dir) {
1124             assert(G_IS_DIR_SEPARATOR(dir[-1]));
1125             g_string_append(result, dir - 1);
1126         }
1127     }
1128 
1129     return g_string_free(result, false);
1130 }
1131