xref: /openbmc/qemu/util/cutils.c (revision b45c03f5)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu-common.h"
25 #include "qemu/host-utils.h"
26 #include <math.h>
27 #include <limits.h>
28 #include <errno.h>
29 
30 #include "qemu/sockets.h"
31 #include "qemu/iov.h"
32 #include "net/net.h"
33 
34 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
35 {
36     int len = qemu_strnlen(str, buf_size);
37     memcpy(buf, str, len);
38     memset(buf + len, pad, buf_size - len);
39 }
40 
41 void pstrcpy(char *buf, int buf_size, const char *str)
42 {
43     int c;
44     char *q = buf;
45 
46     if (buf_size <= 0)
47         return;
48 
49     for(;;) {
50         c = *str++;
51         if (c == 0 || q >= buf + buf_size - 1)
52             break;
53         *q++ = c;
54     }
55     *q = '\0';
56 }
57 
58 /* strcat and truncate. */
59 char *pstrcat(char *buf, int buf_size, const char *s)
60 {
61     int len;
62     len = strlen(buf);
63     if (len < buf_size)
64         pstrcpy(buf + len, buf_size - len, s);
65     return buf;
66 }
67 
68 int strstart(const char *str, const char *val, const char **ptr)
69 {
70     const char *p, *q;
71     p = str;
72     q = val;
73     while (*q != '\0') {
74         if (*p != *q)
75             return 0;
76         p++;
77         q++;
78     }
79     if (ptr)
80         *ptr = p;
81     return 1;
82 }
83 
84 int stristart(const char *str, const char *val, const char **ptr)
85 {
86     const char *p, *q;
87     p = str;
88     q = val;
89     while (*q != '\0') {
90         if (qemu_toupper(*p) != qemu_toupper(*q))
91             return 0;
92         p++;
93         q++;
94     }
95     if (ptr)
96         *ptr = p;
97     return 1;
98 }
99 
100 /* XXX: use host strnlen if available ? */
101 int qemu_strnlen(const char *s, int max_len)
102 {
103     int i;
104 
105     for(i = 0; i < max_len; i++) {
106         if (s[i] == '\0') {
107             break;
108         }
109     }
110     return i;
111 }
112 
113 char *qemu_strsep(char **input, const char *delim)
114 {
115     char *result = *input;
116     if (result != NULL) {
117         char *p;
118 
119         for (p = result; *p != '\0'; p++) {
120             if (strchr(delim, *p)) {
121                 break;
122             }
123         }
124         if (*p == '\0') {
125             *input = NULL;
126         } else {
127             *p = '\0';
128             *input = p + 1;
129         }
130     }
131     return result;
132 }
133 
134 time_t mktimegm(struct tm *tm)
135 {
136     time_t t;
137     int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
138     if (m < 3) {
139         m += 12;
140         y--;
141     }
142     t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
143                  y / 400 - 719469);
144     t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
145     return t;
146 }
147 
148 int qemu_fls(int i)
149 {
150     return 32 - clz32(i);
151 }
152 
153 /*
154  * Make sure data goes on disk, but if possible do not bother to
155  * write out the inode just for timestamp updates.
156  *
157  * Unfortunately even in 2009 many operating systems do not support
158  * fdatasync and have to fall back to fsync.
159  */
160 int qemu_fdatasync(int fd)
161 {
162 #ifdef CONFIG_FDATASYNC
163     return fdatasync(fd);
164 #else
165     return fsync(fd);
166 #endif
167 }
168 
169 /*
170  * Searches for an area with non-zero content in a buffer
171  *
172  * Attention! The len must be a multiple of
173  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
174  * and addr must be a multiple of sizeof(VECTYPE) due to
175  * restriction of optimizations in this function.
176  *
177  * can_use_buffer_find_nonzero_offset() can be used to check
178  * these requirements.
179  *
180  * The return value is the offset of the non-zero area rounded
181  * down to a multiple of sizeof(VECTYPE) for the first
182  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to
183  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
184  * afterwards.
185  *
186  * If the buffer is all zero the return value is equal to len.
187  */
188 
189 size_t buffer_find_nonzero_offset(const void *buf, size_t len)
190 {
191     const VECTYPE *p = buf;
192     const VECTYPE zero = (VECTYPE){0};
193     size_t i;
194 
195     assert(can_use_buffer_find_nonzero_offset(buf, len));
196 
197     if (!len) {
198         return 0;
199     }
200 
201     for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
202         if (!ALL_EQ(p[i], zero)) {
203             return i * sizeof(VECTYPE);
204         }
205     }
206 
207     for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
208          i < len / sizeof(VECTYPE);
209          i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
210         VECTYPE tmp0 = VEC_OR(p[i + 0], p[i + 1]);
211         VECTYPE tmp1 = VEC_OR(p[i + 2], p[i + 3]);
212         VECTYPE tmp2 = VEC_OR(p[i + 4], p[i + 5]);
213         VECTYPE tmp3 = VEC_OR(p[i + 6], p[i + 7]);
214         VECTYPE tmp01 = VEC_OR(tmp0, tmp1);
215         VECTYPE tmp23 = VEC_OR(tmp2, tmp3);
216         if (!ALL_EQ(VEC_OR(tmp01, tmp23), zero)) {
217             break;
218         }
219     }
220 
221     return i * sizeof(VECTYPE);
222 }
223 
224 /*
225  * Checks if a buffer is all zeroes
226  *
227  * Attention! The len must be a multiple of 4 * sizeof(long) due to
228  * restriction of optimizations in this function.
229  */
230 bool buffer_is_zero(const void *buf, size_t len)
231 {
232     /*
233      * Use long as the biggest available internal data type that fits into the
234      * CPU register and unroll the loop to smooth out the effect of memory
235      * latency.
236      */
237 
238     size_t i;
239     long d0, d1, d2, d3;
240     const long * const data = buf;
241 
242     /* use vector optimized zero check if possible */
243     if (can_use_buffer_find_nonzero_offset(buf, len)) {
244         return buffer_find_nonzero_offset(buf, len) == len;
245     }
246 
247     assert(len % (4 * sizeof(long)) == 0);
248     len /= sizeof(long);
249 
250     for (i = 0; i < len; i += 4) {
251         d0 = data[i + 0];
252         d1 = data[i + 1];
253         d2 = data[i + 2];
254         d3 = data[i + 3];
255 
256         if (d0 || d1 || d2 || d3) {
257             return false;
258         }
259     }
260 
261     return true;
262 }
263 
264 #ifndef _WIN32
265 /* Sets a specific flag */
266 int fcntl_setfl(int fd, int flag)
267 {
268     int flags;
269 
270     flags = fcntl(fd, F_GETFL);
271     if (flags == -1)
272         return -errno;
273 
274     if (fcntl(fd, F_SETFL, flags | flag) == -1)
275         return -errno;
276 
277     return 0;
278 }
279 #endif
280 
281 static int64_t suffix_mul(char suffix, int64_t unit)
282 {
283     switch (qemu_toupper(suffix)) {
284     case STRTOSZ_DEFSUFFIX_B:
285         return 1;
286     case STRTOSZ_DEFSUFFIX_KB:
287         return unit;
288     case STRTOSZ_DEFSUFFIX_MB:
289         return unit * unit;
290     case STRTOSZ_DEFSUFFIX_GB:
291         return unit * unit * unit;
292     case STRTOSZ_DEFSUFFIX_TB:
293         return unit * unit * unit * unit;
294     case STRTOSZ_DEFSUFFIX_PB:
295         return unit * unit * unit * unit * unit;
296     case STRTOSZ_DEFSUFFIX_EB:
297         return unit * unit * unit * unit * unit * unit;
298     }
299     return -1;
300 }
301 
302 /*
303  * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
304  * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
305  * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on
306  * other error.
307  */
308 int64_t strtosz_suffix_unit(const char *nptr, char **end,
309                             const char default_suffix, int64_t unit)
310 {
311     int64_t retval = -EINVAL;
312     char *endptr;
313     unsigned char c;
314     int mul_required = 0;
315     double val, mul, integral, fraction;
316 
317     errno = 0;
318     val = strtod(nptr, &endptr);
319     if (isnan(val) || endptr == nptr || errno != 0) {
320         goto fail;
321     }
322     fraction = modf(val, &integral);
323     if (fraction != 0) {
324         mul_required = 1;
325     }
326     c = *endptr;
327     mul = suffix_mul(c, unit);
328     if (mul >= 0) {
329         endptr++;
330     } else {
331         mul = suffix_mul(default_suffix, unit);
332         assert(mul >= 0);
333     }
334     if (mul == 1 && mul_required) {
335         goto fail;
336     }
337     if ((val * mul >= INT64_MAX) || val < 0) {
338         retval = -ERANGE;
339         goto fail;
340     }
341     retval = val * mul;
342 
343 fail:
344     if (end) {
345         *end = endptr;
346     }
347 
348     return retval;
349 }
350 
351 int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix)
352 {
353     return strtosz_suffix_unit(nptr, end, default_suffix, 1024);
354 }
355 
356 int64_t strtosz(const char *nptr, char **end)
357 {
358     return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
359 }
360 
361 /**
362  * parse_uint:
363  *
364  * @s: String to parse
365  * @value: Destination for parsed integer value
366  * @endptr: Destination for pointer to first character not consumed
367  * @base: integer base, between 2 and 36 inclusive, or 0
368  *
369  * Parse unsigned integer
370  *
371  * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
372  * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
373  *
374  * If @s is null, or @base is invalid, or @s doesn't start with an
375  * integer in the syntax above, set *@value to 0, *@endptr to @s, and
376  * return -EINVAL.
377  *
378  * Set *@endptr to point right beyond the parsed integer (even if the integer
379  * overflows or is negative, all digits will be parsed and *@endptr will
380  * point right beyond them).
381  *
382  * If the integer is negative, set *@value to 0, and return -ERANGE.
383  *
384  * If the integer overflows unsigned long long, set *@value to
385  * ULLONG_MAX, and return -ERANGE.
386  *
387  * Else, set *@value to the parsed integer, and return 0.
388  */
389 int parse_uint(const char *s, unsigned long long *value, char **endptr,
390                int base)
391 {
392     int r = 0;
393     char *endp = (char *)s;
394     unsigned long long val = 0;
395 
396     if (!s) {
397         r = -EINVAL;
398         goto out;
399     }
400 
401     errno = 0;
402     val = strtoull(s, &endp, base);
403     if (errno) {
404         r = -errno;
405         goto out;
406     }
407 
408     if (endp == s) {
409         r = -EINVAL;
410         goto out;
411     }
412 
413     /* make sure we reject negative numbers: */
414     while (isspace((unsigned char)*s)) {
415         s++;
416     }
417     if (*s == '-') {
418         val = 0;
419         r = -ERANGE;
420         goto out;
421     }
422 
423 out:
424     *value = val;
425     *endptr = endp;
426     return r;
427 }
428 
429 /**
430  * parse_uint_full:
431  *
432  * @s: String to parse
433  * @value: Destination for parsed integer value
434  * @base: integer base, between 2 and 36 inclusive, or 0
435  *
436  * Parse unsigned integer from entire string
437  *
438  * Have the same behavior of parse_uint(), but with an additional check
439  * for additional data after the parsed number. If extra characters are present
440  * after the parsed number, the function will return -EINVAL, and *@v will
441  * be set to 0.
442  */
443 int parse_uint_full(const char *s, unsigned long long *value, int base)
444 {
445     char *endp;
446     int r;
447 
448     r = parse_uint(s, value, &endp, base);
449     if (r < 0) {
450         return r;
451     }
452     if (*endp) {
453         *value = 0;
454         return -EINVAL;
455     }
456 
457     return 0;
458 }
459 
460 int qemu_parse_fd(const char *param)
461 {
462     long fd;
463     char *endptr;
464 
465     errno = 0;
466     fd = strtol(param, &endptr, 10);
467     if (param == endptr /* no conversion performed */                    ||
468         errno != 0      /* not representable as long; possibly others */ ||
469         *endptr != '\0' /* final string not empty */                     ||
470         fd < 0          /* invalid as file descriptor */                 ||
471         fd > INT_MAX    /* not representable as int */) {
472         return -1;
473     }
474     return fd;
475 }
476 
477 /* round down to the nearest power of 2*/
478 int64_t pow2floor(int64_t value)
479 {
480     if (!is_power_of_2(value)) {
481         value = 0x8000000000000000ULL >> clz64(value);
482     }
483     return value;
484 }
485 
486 /* round up to the nearest power of 2 (0 if overflow) */
487 uint64_t pow2ceil(uint64_t value)
488 {
489     uint8_t nlz = clz64(value);
490 
491     if (is_power_of_2(value)) {
492         return value;
493     }
494     if (!nlz) {
495         return 0;
496     }
497     return 1ULL << (64 - nlz);
498 }
499 
500 /*
501  * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
502  * Input is limited to 14-bit numbers
503  */
504 int uleb128_encode_small(uint8_t *out, uint32_t n)
505 {
506     g_assert(n <= 0x3fff);
507     if (n < 0x80) {
508         *out++ = n;
509         return 1;
510     } else {
511         *out++ = (n & 0x7f) | 0x80;
512         *out++ = n >> 7;
513         return 2;
514     }
515 }
516 
517 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
518 {
519     if (!(*in & 0x80)) {
520         *n = *in++;
521         return 1;
522     } else {
523         *n = *in++ & 0x7f;
524         /* we exceed 14 bit number */
525         if (*in & 0x80) {
526             return -1;
527         }
528         *n |= *in++ << 7;
529         return 2;
530     }
531 }
532 
533 /*
534  * helper to parse debug environment variables
535  */
536 int parse_debug_env(const char *name, int max, int initial)
537 {
538     char *debug_env = getenv(name);
539     char *inv = NULL;
540     long debug;
541 
542     if (!debug_env) {
543         return initial;
544     }
545     errno = 0;
546     debug = strtol(debug_env, &inv, 10);
547     if (inv == debug_env) {
548         return initial;
549     }
550     if (debug < 0 || debug > max || errno != 0) {
551         fprintf(stderr, "warning: %s not in [0, %d]", name, max);
552         return initial;
553     }
554     return debug;
555 }
556 
557 /*
558  * Helper to print ethernet mac address
559  */
560 const char *qemu_ether_ntoa(const MACAddr *mac)
561 {
562     static char ret[18];
563 
564     snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x",
565              mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]);
566 
567     return ret;
568 }
569