1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #ifdef __FreeBSD__ 30 #include <sys/sysctl.h> 31 #include <sys/user.h> 32 #endif 33 34 #ifdef __NetBSD__ 35 #include <sys/sysctl.h> 36 #endif 37 38 #ifdef __HAIKU__ 39 #include <kernel/image.h> 40 #endif 41 42 #ifdef __APPLE__ 43 #include <mach-o/dyld.h> 44 #endif 45 46 #ifdef G_OS_WIN32 47 #include <pathcch.h> 48 #include <wchar.h> 49 #endif 50 51 #include "qemu/ctype.h" 52 #include "qemu/cutils.h" 53 #include "qemu/error-report.h" 54 55 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 56 { 57 int len = qemu_strnlen(str, buf_size); 58 memcpy(buf, str, len); 59 memset(buf + len, pad, buf_size - len); 60 } 61 62 void pstrcpy(char *buf, int buf_size, const char *str) 63 { 64 int c; 65 char *q = buf; 66 67 if (buf_size <= 0) 68 return; 69 70 for(;;) { 71 c = *str++; 72 if (c == 0 || q >= buf + buf_size - 1) 73 break; 74 *q++ = c; 75 } 76 *q = '\0'; 77 } 78 79 /* strcat and truncate. */ 80 char *pstrcat(char *buf, int buf_size, const char *s) 81 { 82 int len; 83 len = strlen(buf); 84 if (len < buf_size) 85 pstrcpy(buf + len, buf_size - len, s); 86 return buf; 87 } 88 89 int strstart(const char *str, const char *val, const char **ptr) 90 { 91 const char *p, *q; 92 p = str; 93 q = val; 94 while (*q != '\0') { 95 if (*p != *q) 96 return 0; 97 p++; 98 q++; 99 } 100 if (ptr) 101 *ptr = p; 102 return 1; 103 } 104 105 int stristart(const char *str, const char *val, const char **ptr) 106 { 107 const char *p, *q; 108 p = str; 109 q = val; 110 while (*q != '\0') { 111 if (qemu_toupper(*p) != qemu_toupper(*q)) 112 return 0; 113 p++; 114 q++; 115 } 116 if (ptr) 117 *ptr = p; 118 return 1; 119 } 120 121 /* XXX: use host strnlen if available ? */ 122 int qemu_strnlen(const char *s, int max_len) 123 { 124 int i; 125 126 for(i = 0; i < max_len; i++) { 127 if (s[i] == '\0') { 128 break; 129 } 130 } 131 return i; 132 } 133 134 char *qemu_strsep(char **input, const char *delim) 135 { 136 char *result = *input; 137 if (result != NULL) { 138 char *p; 139 140 for (p = result; *p != '\0'; p++) { 141 if (strchr(delim, *p)) { 142 break; 143 } 144 } 145 if (*p == '\0') { 146 *input = NULL; 147 } else { 148 *p = '\0'; 149 *input = p + 1; 150 } 151 } 152 return result; 153 } 154 155 time_t mktimegm(struct tm *tm) 156 { 157 time_t t; 158 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 159 if (m < 3) { 160 m += 12; 161 y--; 162 } 163 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 164 y / 400 - 719469); 165 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 166 return t; 167 } 168 169 static int64_t suffix_mul(char suffix, int64_t unit) 170 { 171 switch (qemu_toupper(suffix)) { 172 case 'B': 173 return 1; 174 case 'K': 175 return unit; 176 case 'M': 177 return unit * unit; 178 case 'G': 179 return unit * unit * unit; 180 case 'T': 181 return unit * unit * unit * unit; 182 case 'P': 183 return unit * unit * unit * unit * unit; 184 case 'E': 185 return unit * unit * unit * unit * unit * unit; 186 } 187 return -1; 188 } 189 190 /* 191 * Convert size string to bytes. 192 * 193 * The size parsing supports the following syntaxes 194 * - 12345 - decimal, scale determined by @default_suffix and @unit 195 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 196 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 197 * fractional portion is truncated to byte 198 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 199 * 200 * The following are intentionally not supported 201 * - hex with scaling suffix, such as 0x20M 202 * - octal, such as 08 203 * - fractional hex, such as 0x1.8 204 * - floating point exponents, such as 1e3 205 * 206 * The end pointer will be returned in *end, if not NULL. If there is 207 * no fraction, the input can be decimal or hexadecimal; if there is a 208 * fraction, then the input must be decimal and there must be a suffix 209 * (possibly by @default_suffix) larger than Byte, and the fractional 210 * portion may suffer from precision loss or rounding. The input must 211 * be positive. 212 * 213 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 214 * other error (with *@end left unchanged). 215 */ 216 static int do_strtosz(const char *nptr, const char **end, 217 const char default_suffix, int64_t unit, 218 uint64_t *result) 219 { 220 int retval; 221 const char *endptr, *f; 222 unsigned char c; 223 uint64_t val, valf = 0; 224 int64_t mul; 225 226 /* Parse integral portion as decimal. */ 227 retval = qemu_strtou64(nptr, &endptr, 10, &val); 228 if (retval) { 229 goto out; 230 } 231 if (memchr(nptr, '-', endptr - nptr) != NULL) { 232 endptr = nptr; 233 retval = -EINVAL; 234 goto out; 235 } 236 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { 237 /* Input looks like hex; reparse, and insist on no fraction or suffix. */ 238 retval = qemu_strtou64(nptr, &endptr, 16, &val); 239 if (retval) { 240 goto out; 241 } 242 if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) { 243 endptr = nptr; 244 retval = -EINVAL; 245 goto out; 246 } 247 } else if (*endptr == '.') { 248 /* 249 * Input looks like a fraction. Make sure even 1.k works 250 * without fractional digits. If we see an exponent, treat 251 * the entire input as invalid instead. 252 */ 253 double fraction; 254 255 f = endptr; 256 retval = qemu_strtod_finite(f, &endptr, &fraction); 257 if (retval) { 258 endptr++; 259 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { 260 endptr = nptr; 261 retval = -EINVAL; 262 goto out; 263 } else { 264 /* Extract into a 64-bit fixed-point fraction. */ 265 valf = (uint64_t)(fraction * 0x1p64); 266 } 267 } 268 c = *endptr; 269 mul = suffix_mul(c, unit); 270 if (mul > 0) { 271 endptr++; 272 } else { 273 mul = suffix_mul(default_suffix, unit); 274 assert(mul > 0); 275 } 276 if (mul == 1) { 277 /* When a fraction is present, a scale is required. */ 278 if (valf != 0) { 279 endptr = nptr; 280 retval = -EINVAL; 281 goto out; 282 } 283 } else { 284 uint64_t valh, tmp; 285 286 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 287 mulu64(&val, &valh, val, mul); 288 mulu64(&valf, &tmp, valf, mul); 289 val += tmp; 290 valh += val < tmp; 291 292 /* Round 0.5 upward. */ 293 tmp = valf >> 63; 294 val += tmp; 295 valh += val < tmp; 296 297 /* Report overflow. */ 298 if (valh != 0) { 299 retval = -ERANGE; 300 goto out; 301 } 302 } 303 304 retval = 0; 305 306 out: 307 if (end) { 308 *end = endptr; 309 } else if (nptr && *endptr) { 310 retval = -EINVAL; 311 } 312 if (retval == 0) { 313 *result = val; 314 } 315 316 return retval; 317 } 318 319 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 320 { 321 return do_strtosz(nptr, end, 'B', 1024, result); 322 } 323 324 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 325 { 326 return do_strtosz(nptr, end, 'M', 1024, result); 327 } 328 329 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 330 { 331 return do_strtosz(nptr, end, 'B', 1000, result); 332 } 333 334 /** 335 * Helper function for error checking after strtol() and the like 336 */ 337 static int check_strtox_error(const char *nptr, char *ep, 338 const char **endptr, bool check_zero, 339 int libc_errno) 340 { 341 assert(ep >= nptr); 342 343 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ 344 if (check_zero && ep == nptr && libc_errno == 0) { 345 char *tmp; 346 347 errno = 0; 348 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && 349 (*tmp == 'x' || *tmp == 'X')) { 350 ep = tmp; 351 } 352 } 353 354 if (endptr) { 355 *endptr = ep; 356 } 357 358 /* Turn "no conversion" into an error */ 359 if (libc_errno == 0 && ep == nptr) { 360 return -EINVAL; 361 } 362 363 /* Fail when we're expected to consume the string, but didn't */ 364 if (!endptr && *ep) { 365 return -EINVAL; 366 } 367 368 return -libc_errno; 369 } 370 371 /** 372 * Convert string @nptr to an integer, and store it in @result. 373 * 374 * This is a wrapper around strtol() that is harder to misuse. 375 * Semantics of @nptr, @endptr, @base match strtol() with differences 376 * noted below. 377 * 378 * @nptr may be null, and no conversion is performed then. 379 * 380 * If no conversion is performed, store @nptr in *@endptr and return 381 * -EINVAL. 382 * 383 * If @endptr is null, and the string isn't fully converted, return 384 * -EINVAL. This is the case when the pointer that would be stored in 385 * a non-null @endptr points to a character other than '\0'. 386 * 387 * If the conversion overflows @result, store INT_MAX in @result, 388 * and return -ERANGE. 389 * 390 * If the conversion underflows @result, store INT_MIN in @result, 391 * and return -ERANGE. 392 * 393 * Else store the converted value in @result, and return zero. 394 * 395 * This matches the behavior of strtol() on 32-bit platforms, even on 396 * platforms where long is 64-bits. 397 */ 398 int qemu_strtoi(const char *nptr, const char **endptr, int base, 399 int *result) 400 { 401 char *ep; 402 long long lresult; 403 404 assert((unsigned) base <= 36 && base != 1); 405 if (!nptr) { 406 if (endptr) { 407 *endptr = nptr; 408 } 409 return -EINVAL; 410 } 411 412 errno = 0; 413 lresult = strtoll(nptr, &ep, base); 414 if (lresult < INT_MIN) { 415 *result = INT_MIN; 416 errno = ERANGE; 417 } else if (lresult > INT_MAX) { 418 *result = INT_MAX; 419 errno = ERANGE; 420 } else { 421 *result = lresult; 422 } 423 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 424 } 425 426 /** 427 * Convert string @nptr to an unsigned integer, and store it in @result. 428 * 429 * This is a wrapper around strtoul() that is harder to misuse. 430 * Semantics of @nptr, @endptr, @base match strtoul() with differences 431 * noted below. 432 * 433 * @nptr may be null, and no conversion is performed then. 434 * 435 * If no conversion is performed, store @nptr in *@endptr and return 436 * -EINVAL. 437 * 438 * If @endptr is null, and the string isn't fully converted, return 439 * -EINVAL. This is the case when the pointer that would be stored in 440 * a non-null @endptr points to a character other than '\0'. 441 * 442 * If the conversion overflows @result, store UINT_MAX in @result, 443 * and return -ERANGE. 444 * 445 * Else store the converted value in @result, and return zero. 446 * 447 * Note that a number with a leading minus sign gets converted without 448 * the minus sign, checked for overflow (see above), then negated (in 449 * @result's type). This matches the behavior of strtoul() on 32-bit 450 * platforms, even on platforms where long is 64-bits. 451 */ 452 int qemu_strtoui(const char *nptr, const char **endptr, int base, 453 unsigned int *result) 454 { 455 char *ep; 456 unsigned long long lresult; 457 bool neg; 458 459 assert((unsigned) base <= 36 && base != 1); 460 if (!nptr) { 461 if (endptr) { 462 *endptr = nptr; 463 } 464 return -EINVAL; 465 } 466 467 errno = 0; 468 lresult = strtoull(nptr, &ep, base); 469 470 /* Windows returns 1 for negative out-of-range values. */ 471 if (errno == ERANGE) { 472 *result = -1; 473 } else { 474 /* 475 * Note that platforms with 32-bit strtoul only accept input 476 * in the range [-4294967295, 4294967295]; but we used 64-bit 477 * strtoull which wraps -18446744073709551615 to 1 instead of 478 * declaring overflow. So we must check if '-' was parsed, 479 * and if so, undo the negation before doing our bounds check. 480 */ 481 neg = memchr(nptr, '-', ep - nptr) != NULL; 482 if (neg) { 483 lresult = -lresult; 484 } 485 if (lresult > UINT_MAX) { 486 *result = UINT_MAX; 487 errno = ERANGE; 488 } else { 489 *result = neg ? -lresult : lresult; 490 } 491 } 492 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 493 } 494 495 /** 496 * Convert string @nptr to a long integer, and store it in @result. 497 * 498 * This is a wrapper around strtol() that is harder to misuse. 499 * Semantics of @nptr, @endptr, @base match strtol() with differences 500 * noted below. 501 * 502 * @nptr may be null, and no conversion is performed then. 503 * 504 * If no conversion is performed, store @nptr in *@endptr and return 505 * -EINVAL. 506 * 507 * If @endptr is null, and the string isn't fully converted, return 508 * -EINVAL. This is the case when the pointer that would be stored in 509 * a non-null @endptr points to a character other than '\0'. 510 * 511 * If the conversion overflows @result, store LONG_MAX in @result, 512 * and return -ERANGE. 513 * 514 * If the conversion underflows @result, store LONG_MIN in @result, 515 * and return -ERANGE. 516 * 517 * Else store the converted value in @result, and return zero. 518 */ 519 int qemu_strtol(const char *nptr, const char **endptr, int base, 520 long *result) 521 { 522 char *ep; 523 524 assert((unsigned) base <= 36 && base != 1); 525 if (!nptr) { 526 if (endptr) { 527 *endptr = nptr; 528 } 529 return -EINVAL; 530 } 531 532 errno = 0; 533 *result = strtol(nptr, &ep, base); 534 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 535 } 536 537 /** 538 * Convert string @nptr to an unsigned long, and store it in @result. 539 * 540 * This is a wrapper around strtoul() that is harder to misuse. 541 * Semantics of @nptr, @endptr, @base match strtoul() with differences 542 * noted below. 543 * 544 * @nptr may be null, and no conversion is performed then. 545 * 546 * If no conversion is performed, store @nptr in *@endptr and return 547 * -EINVAL. 548 * 549 * If @endptr is null, and the string isn't fully converted, return 550 * -EINVAL. This is the case when the pointer that would be stored in 551 * a non-null @endptr points to a character other than '\0'. 552 * 553 * If the conversion overflows @result, store ULONG_MAX in @result, 554 * and return -ERANGE. 555 * 556 * Else store the converted value in @result, and return zero. 557 * 558 * Note that a number with a leading minus sign gets converted without 559 * the minus sign, checked for overflow (see above), then negated (in 560 * @result's type). This is exactly how strtoul() works. 561 */ 562 int qemu_strtoul(const char *nptr, const char **endptr, int base, 563 unsigned long *result) 564 { 565 char *ep; 566 567 assert((unsigned) base <= 36 && base != 1); 568 if (!nptr) { 569 if (endptr) { 570 *endptr = nptr; 571 } 572 return -EINVAL; 573 } 574 575 errno = 0; 576 *result = strtoul(nptr, &ep, base); 577 /* Windows returns 1 for negative out-of-range values. */ 578 if (errno == ERANGE) { 579 *result = -1; 580 } 581 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 582 } 583 584 /** 585 * Convert string @nptr to an int64_t. 586 * 587 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 588 * and INT64_MIN on underflow. 589 */ 590 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 591 int64_t *result) 592 { 593 char *ep; 594 595 assert((unsigned) base <= 36 && base != 1); 596 if (!nptr) { 597 if (endptr) { 598 *endptr = nptr; 599 } 600 return -EINVAL; 601 } 602 603 /* This assumes int64_t is long long TODO relax */ 604 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 605 errno = 0; 606 *result = strtoll(nptr, &ep, base); 607 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 608 } 609 610 /** 611 * Convert string @nptr to an uint64_t. 612 * 613 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 614 * (If you want to prohibit negative numbers that wrap around to 615 * positive, use parse_uint()). 616 */ 617 int qemu_strtou64(const char *nptr, const char **endptr, int base, 618 uint64_t *result) 619 { 620 char *ep; 621 622 assert((unsigned) base <= 36 && base != 1); 623 if (!nptr) { 624 if (endptr) { 625 *endptr = nptr; 626 } 627 return -EINVAL; 628 } 629 630 /* This assumes uint64_t is unsigned long long TODO relax */ 631 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 632 errno = 0; 633 *result = strtoull(nptr, &ep, base); 634 /* Windows returns 1 for negative out-of-range values. */ 635 if (errno == ERANGE) { 636 *result = -1; 637 } 638 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 639 } 640 641 /** 642 * Convert string @nptr to a double. 643 * 644 * This is a wrapper around strtod() that is harder to misuse. 645 * Semantics of @nptr and @endptr match strtod() with differences 646 * noted below. 647 * 648 * @nptr may be null, and no conversion is performed then. 649 * 650 * If no conversion is performed, store @nptr in *@endptr and return 651 * -EINVAL. 652 * 653 * If @endptr is null, and the string isn't fully converted, return 654 * -EINVAL. This is the case when the pointer that would be stored in 655 * a non-null @endptr points to a character other than '\0'. 656 * 657 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 658 * on the sign, and return -ERANGE. 659 * 660 * If the conversion underflows, store +/-0.0 in @result, depending on the 661 * sign, and return -ERANGE. 662 * 663 * Else store the converted value in @result, and return zero. 664 */ 665 int qemu_strtod(const char *nptr, const char **endptr, double *result) 666 { 667 char *ep; 668 669 if (!nptr) { 670 if (endptr) { 671 *endptr = nptr; 672 } 673 return -EINVAL; 674 } 675 676 errno = 0; 677 *result = strtod(nptr, &ep); 678 return check_strtox_error(nptr, ep, endptr, false, errno); 679 } 680 681 /** 682 * Convert string @nptr to a finite double. 683 * 684 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 685 * with -EINVAL and no conversion is performed. 686 */ 687 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 688 { 689 double tmp; 690 int ret; 691 692 ret = qemu_strtod(nptr, endptr, &tmp); 693 if (!ret && !isfinite(tmp)) { 694 if (endptr) { 695 *endptr = nptr; 696 } 697 ret = -EINVAL; 698 } 699 700 if (ret != -EINVAL) { 701 *result = tmp; 702 } 703 return ret; 704 } 705 706 /** 707 * Searches for the first occurrence of 'c' in 's', and returns a pointer 708 * to the trailing null byte if none was found. 709 */ 710 #ifndef HAVE_STRCHRNUL 711 const char *qemu_strchrnul(const char *s, int c) 712 { 713 const char *e = strchr(s, c); 714 if (!e) { 715 e = s + strlen(s); 716 } 717 return e; 718 } 719 #endif 720 721 /** 722 * parse_uint: 723 * 724 * @s: String to parse 725 * @endptr: Destination for pointer to first character not consumed 726 * @base: integer base, between 2 and 36 inclusive, or 0 727 * @value: Destination for parsed integer value 728 * 729 * Parse unsigned integer 730 * 731 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 732 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 733 * 734 * If @s is null, or @s doesn't start with an integer in the syntax 735 * above, set *@value to 0, *@endptr to @s, and return -EINVAL. 736 * 737 * Set *@endptr to point right beyond the parsed integer (even if the integer 738 * overflows or is negative, all digits will be parsed and *@endptr will 739 * point right beyond them). If @endptr is %NULL, any trailing character 740 * instead causes a result of -EINVAL with *@value of 0. 741 * 742 * If the integer is negative, set *@value to 0, and return -ERANGE. 743 * (If you want to allow negative numbers that wrap around within 744 * bounds, use qemu_strtou64()). 745 * 746 * If the integer overflows unsigned long long, set *@value to 747 * ULLONG_MAX, and return -ERANGE. 748 * 749 * Else, set *@value to the parsed integer, and return 0. 750 */ 751 int parse_uint(const char *s, const char **endptr, int base, uint64_t *value) 752 { 753 int r = 0; 754 char *endp = (char *)s; 755 unsigned long long val = 0; 756 757 assert((unsigned) base <= 36 && base != 1); 758 if (!s) { 759 r = -EINVAL; 760 goto out; 761 } 762 763 errno = 0; 764 val = strtoull(s, &endp, base); 765 if (errno) { 766 r = -errno; 767 goto out; 768 } 769 770 if (endp == s) { 771 r = -EINVAL; 772 goto out; 773 } 774 775 /* make sure we reject negative numbers: */ 776 while (qemu_isspace(*s)) { 777 s++; 778 } 779 if (*s == '-') { 780 val = 0; 781 r = -ERANGE; 782 goto out; 783 } 784 785 out: 786 *value = val; 787 if (endptr) { 788 *endptr = endp; 789 } else if (s && *endp) { 790 r = -EINVAL; 791 *value = 0; 792 } 793 return r; 794 } 795 796 /** 797 * parse_uint_full: 798 * 799 * @s: String to parse 800 * @base: integer base, between 2 and 36 inclusive, or 0 801 * @value: Destination for parsed integer value 802 * 803 * Parse unsigned integer from entire string, rejecting any trailing slop. 804 * 805 * Shorthand for parse_uint(s, NULL, base, value). 806 */ 807 int parse_uint_full(const char *s, int base, uint64_t *value) 808 { 809 return parse_uint(s, NULL, base, value); 810 } 811 812 int qemu_parse_fd(const char *param) 813 { 814 long fd; 815 char *endptr; 816 817 errno = 0; 818 fd = strtol(param, &endptr, 10); 819 if (param == endptr /* no conversion performed */ || 820 errno != 0 /* not representable as long; possibly others */ || 821 *endptr != '\0' /* final string not empty */ || 822 fd < 0 /* invalid as file descriptor */ || 823 fd > INT_MAX /* not representable as int */) { 824 return -1; 825 } 826 return fd; 827 } 828 829 /* 830 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 831 * Input is limited to 14-bit numbers 832 */ 833 int uleb128_encode_small(uint8_t *out, uint32_t n) 834 { 835 g_assert(n <= 0x3fff); 836 if (n < 0x80) { 837 *out = n; 838 return 1; 839 } else { 840 *out++ = (n & 0x7f) | 0x80; 841 *out = n >> 7; 842 return 2; 843 } 844 } 845 846 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 847 { 848 if (!(*in & 0x80)) { 849 *n = *in; 850 return 1; 851 } else { 852 *n = *in++ & 0x7f; 853 /* we exceed 14 bit number */ 854 if (*in & 0x80) { 855 return -1; 856 } 857 *n |= *in << 7; 858 return 2; 859 } 860 } 861 862 /* 863 * helper to parse debug environment variables 864 */ 865 int parse_debug_env(const char *name, int max, int initial) 866 { 867 char *debug_env = getenv(name); 868 char *inv = NULL; 869 long debug; 870 871 if (!debug_env) { 872 return initial; 873 } 874 errno = 0; 875 debug = strtol(debug_env, &inv, 10); 876 if (inv == debug_env) { 877 return initial; 878 } 879 if (debug < 0 || debug > max || errno != 0) { 880 warn_report("%s not in [0, %d]", name, max); 881 return initial; 882 } 883 return debug; 884 } 885 886 const char *si_prefix(unsigned int exp10) 887 { 888 static const char *prefixes[] = { 889 "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E" 890 }; 891 892 exp10 += 18; 893 assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes)); 894 return prefixes[exp10 / 3]; 895 } 896 897 const char *iec_binary_prefix(unsigned int exp2) 898 { 899 static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 900 901 assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes)); 902 return prefixes[exp2 / 10]; 903 } 904 905 /* 906 * Return human readable string for size @val. 907 * @val can be anything that uint64_t allows (no more than "16 EiB"). 908 * Use IEC binary units like KiB, MiB, and so forth. 909 * Caller is responsible for passing it to g_free(). 910 */ 911 char *size_to_str(uint64_t val) 912 { 913 uint64_t div; 914 int i; 915 916 /* 917 * The exponent (returned in i) minus one gives us 918 * floor(log2(val * 1024 / 1000). The correction makes us 919 * switch to the higher power when the integer part is >= 1000. 920 * (see e41b509d68afb1f for more info) 921 */ 922 frexp(val / (1000.0 / 1024.0), &i); 923 i = (i - 1) / 10 * 10; 924 div = 1ULL << i; 925 926 return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i)); 927 } 928 929 char *freq_to_str(uint64_t freq_hz) 930 { 931 double freq = freq_hz; 932 size_t exp10 = 0; 933 934 while (freq >= 1000.0) { 935 freq /= 1000.0; 936 exp10 += 3; 937 } 938 939 return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10)); 940 } 941 942 int qemu_pstrcmp0(const char **str1, const char **str2) 943 { 944 return g_strcmp0(*str1, *str2); 945 } 946 947 static inline bool starts_with_prefix(const char *dir) 948 { 949 size_t prefix_len = strlen(CONFIG_PREFIX); 950 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 951 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 952 } 953 954 /* Return the next path component in dir, and store its length in *p_len. */ 955 static inline const char *next_component(const char *dir, int *p_len) 956 { 957 int len; 958 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 959 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 960 dir++; 961 } 962 len = 0; 963 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 964 len++; 965 } 966 *p_len = len; 967 return dir; 968 } 969 970 static const char *exec_dir; 971 972 void qemu_init_exec_dir(const char *argv0) 973 { 974 #ifdef G_OS_WIN32 975 char *p; 976 char buf[MAX_PATH]; 977 DWORD len; 978 979 if (exec_dir) { 980 return; 981 } 982 983 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); 984 if (len == 0) { 985 return; 986 } 987 988 buf[len] = 0; 989 p = buf + len - 1; 990 while (p != buf && *p != '\\') { 991 p--; 992 } 993 *p = 0; 994 if (access(buf, R_OK) == 0) { 995 exec_dir = g_strdup(buf); 996 } else { 997 exec_dir = CONFIG_BINDIR; 998 } 999 #else 1000 char *p = NULL; 1001 char buf[PATH_MAX]; 1002 1003 if (exec_dir) { 1004 return; 1005 } 1006 1007 #if defined(__linux__) 1008 { 1009 int len; 1010 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); 1011 if (len > 0) { 1012 buf[len] = 0; 1013 p = buf; 1014 } 1015 } 1016 #elif defined(__FreeBSD__) \ 1017 || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME)) 1018 { 1019 #if defined(__FreeBSD__) 1020 static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; 1021 #else 1022 static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; 1023 #endif 1024 size_t len = sizeof(buf) - 1; 1025 1026 *buf = '\0'; 1027 if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) && 1028 *buf) { 1029 buf[sizeof(buf) - 1] = '\0'; 1030 p = buf; 1031 } 1032 } 1033 #elif defined(__APPLE__) 1034 { 1035 char fpath[PATH_MAX]; 1036 uint32_t len = sizeof(fpath); 1037 if (_NSGetExecutablePath(fpath, &len) == 0) { 1038 p = realpath(fpath, buf); 1039 if (!p) { 1040 return; 1041 } 1042 } 1043 } 1044 #elif defined(__HAIKU__) 1045 { 1046 image_info ii; 1047 int32_t c = 0; 1048 1049 *buf = '\0'; 1050 while (get_next_image_info(0, &c, &ii) == B_OK) { 1051 if (ii.type == B_APP_IMAGE) { 1052 strncpy(buf, ii.name, sizeof(buf)); 1053 buf[sizeof(buf) - 1] = 0; 1054 p = buf; 1055 break; 1056 } 1057 } 1058 } 1059 #endif 1060 /* If we don't have any way of figuring out the actual executable 1061 location then try argv[0]. */ 1062 if (!p && argv0) { 1063 p = realpath(argv0, buf); 1064 } 1065 if (p) { 1066 exec_dir = g_path_get_dirname(p); 1067 } else { 1068 exec_dir = CONFIG_BINDIR; 1069 } 1070 #endif 1071 } 1072 1073 const char *qemu_get_exec_dir(void) 1074 { 1075 return exec_dir; 1076 } 1077 1078 char *get_relocated_path(const char *dir) 1079 { 1080 size_t prefix_len = strlen(CONFIG_PREFIX); 1081 const char *bindir = CONFIG_BINDIR; 1082 const char *exec_dir = qemu_get_exec_dir(); 1083 GString *result; 1084 int len_dir, len_bindir; 1085 1086 /* Fail if qemu_init_exec_dir was not called. */ 1087 assert(exec_dir[0]); 1088 1089 result = g_string_new(exec_dir); 1090 g_string_append(result, "/qemu-bundle"); 1091 if (access(result->str, R_OK) == 0) { 1092 #ifdef G_OS_WIN32 1093 size_t size = mbsrtowcs(NULL, &dir, 0, &(mbstate_t){0}) + 1; 1094 PWSTR wdir = g_new(WCHAR, size); 1095 mbsrtowcs(wdir, &dir, size, &(mbstate_t){0}); 1096 1097 PCWSTR wdir_skipped_root; 1098 PathCchSkipRoot(wdir, &wdir_skipped_root); 1099 1100 size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0}); 1101 char *cursor = result->str + result->len; 1102 g_string_set_size(result, result->len + size); 1103 wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0}); 1104 g_free(wdir); 1105 #else 1106 g_string_append(result, dir); 1107 #endif 1108 } else if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { 1109 g_string_assign(result, dir); 1110 } else { 1111 g_string_assign(result, exec_dir); 1112 1113 /* Advance over common components. */ 1114 len_dir = len_bindir = prefix_len; 1115 do { 1116 dir += len_dir; 1117 bindir += len_bindir; 1118 dir = next_component(dir, &len_dir); 1119 bindir = next_component(bindir, &len_bindir); 1120 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 1121 1122 /* Ascend from bindir to the common prefix with dir. */ 1123 while (len_bindir) { 1124 bindir += len_bindir; 1125 g_string_append(result, "/.."); 1126 bindir = next_component(bindir, &len_bindir); 1127 } 1128 1129 if (*dir) { 1130 assert(G_IS_DIR_SEPARATOR(dir[-1])); 1131 g_string_append(result, dir - 1); 1132 } 1133 } 1134 1135 return g_string_free(result, false); 1136 } 1137