1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #include "qemu/ctype.h" 30 #include "qemu/cutils.h" 31 #include "qemu/error-report.h" 32 33 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 34 { 35 int len = qemu_strnlen(str, buf_size); 36 memcpy(buf, str, len); 37 memset(buf + len, pad, buf_size - len); 38 } 39 40 void pstrcpy(char *buf, int buf_size, const char *str) 41 { 42 int c; 43 char *q = buf; 44 45 if (buf_size <= 0) 46 return; 47 48 for(;;) { 49 c = *str++; 50 if (c == 0 || q >= buf + buf_size - 1) 51 break; 52 *q++ = c; 53 } 54 *q = '\0'; 55 } 56 57 /* strcat and truncate. */ 58 char *pstrcat(char *buf, int buf_size, const char *s) 59 { 60 int len; 61 len = strlen(buf); 62 if (len < buf_size) 63 pstrcpy(buf + len, buf_size - len, s); 64 return buf; 65 } 66 67 int strstart(const char *str, const char *val, const char **ptr) 68 { 69 const char *p, *q; 70 p = str; 71 q = val; 72 while (*q != '\0') { 73 if (*p != *q) 74 return 0; 75 p++; 76 q++; 77 } 78 if (ptr) 79 *ptr = p; 80 return 1; 81 } 82 83 int stristart(const char *str, const char *val, const char **ptr) 84 { 85 const char *p, *q; 86 p = str; 87 q = val; 88 while (*q != '\0') { 89 if (qemu_toupper(*p) != qemu_toupper(*q)) 90 return 0; 91 p++; 92 q++; 93 } 94 if (ptr) 95 *ptr = p; 96 return 1; 97 } 98 99 /* XXX: use host strnlen if available ? */ 100 int qemu_strnlen(const char *s, int max_len) 101 { 102 int i; 103 104 for(i = 0; i < max_len; i++) { 105 if (s[i] == '\0') { 106 break; 107 } 108 } 109 return i; 110 } 111 112 char *qemu_strsep(char **input, const char *delim) 113 { 114 char *result = *input; 115 if (result != NULL) { 116 char *p; 117 118 for (p = result; *p != '\0'; p++) { 119 if (strchr(delim, *p)) { 120 break; 121 } 122 } 123 if (*p == '\0') { 124 *input = NULL; 125 } else { 126 *p = '\0'; 127 *input = p + 1; 128 } 129 } 130 return result; 131 } 132 133 time_t mktimegm(struct tm *tm) 134 { 135 time_t t; 136 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 137 if (m < 3) { 138 m += 12; 139 y--; 140 } 141 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 142 y / 400 - 719469); 143 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 144 return t; 145 } 146 147 static int64_t suffix_mul(char suffix, int64_t unit) 148 { 149 switch (qemu_toupper(suffix)) { 150 case 'B': 151 return 1; 152 case 'K': 153 return unit; 154 case 'M': 155 return unit * unit; 156 case 'G': 157 return unit * unit * unit; 158 case 'T': 159 return unit * unit * unit * unit; 160 case 'P': 161 return unit * unit * unit * unit * unit; 162 case 'E': 163 return unit * unit * unit * unit * unit * unit; 164 } 165 return -1; 166 } 167 168 /* 169 * Convert size string to bytes. 170 * 171 * The size parsing supports the following syntaxes 172 * - 12345 - decimal, scale determined by @default_suffix and @unit 173 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 174 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 175 * fractional portion is truncated to byte 176 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 177 * 178 * The following cause a deprecation warning, and may be removed in the future 179 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix 180 * 181 * The following are intentionally not supported 182 * - octal, such as 08 183 * - fractional hex, such as 0x1.8 184 * - floating point exponents, such as 1e3 185 * 186 * The end pointer will be returned in *end, if not NULL. If there is 187 * no fraction, the input can be decimal or hexadecimal; if there is a 188 * fraction, then the input must be decimal and there must be a suffix 189 * (possibly by @default_suffix) larger than Byte, and the fractional 190 * portion may suffer from precision loss or rounding. The input must 191 * be positive. 192 * 193 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 194 * other error (with *@end left unchanged). 195 */ 196 static int do_strtosz(const char *nptr, const char **end, 197 const char default_suffix, int64_t unit, 198 uint64_t *result) 199 { 200 int retval; 201 const char *endptr, *f; 202 unsigned char c; 203 bool hex = false; 204 uint64_t val, valf = 0; 205 int64_t mul; 206 207 /* Parse integral portion as decimal. */ 208 retval = qemu_strtou64(nptr, &endptr, 10, &val); 209 if (retval) { 210 goto out; 211 } 212 if (memchr(nptr, '-', endptr - nptr) != NULL) { 213 endptr = nptr; 214 retval = -EINVAL; 215 goto out; 216 } 217 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { 218 /* Input looks like hex, reparse, and insist on no fraction. */ 219 retval = qemu_strtou64(nptr, &endptr, 16, &val); 220 if (retval) { 221 goto out; 222 } 223 if (*endptr == '.') { 224 endptr = nptr; 225 retval = -EINVAL; 226 goto out; 227 } 228 hex = true; 229 } else if (*endptr == '.') { 230 /* 231 * Input looks like a fraction. Make sure even 1.k works 232 * without fractional digits. If we see an exponent, treat 233 * the entire input as invalid instead. 234 */ 235 double fraction; 236 237 f = endptr; 238 retval = qemu_strtod_finite(f, &endptr, &fraction); 239 if (retval) { 240 endptr++; 241 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { 242 endptr = nptr; 243 retval = -EINVAL; 244 goto out; 245 } else { 246 /* Extract into a 64-bit fixed-point fraction. */ 247 valf = (uint64_t)(fraction * 0x1p64); 248 } 249 } 250 c = *endptr; 251 mul = suffix_mul(c, unit); 252 if (mul > 0) { 253 if (hex) { 254 warn_report("Using a multiplier suffix on hex numbers " 255 "is deprecated: %s", nptr); 256 } 257 endptr++; 258 } else { 259 mul = suffix_mul(default_suffix, unit); 260 assert(mul > 0); 261 } 262 if (mul == 1) { 263 /* When a fraction is present, a scale is required. */ 264 if (valf != 0) { 265 endptr = nptr; 266 retval = -EINVAL; 267 goto out; 268 } 269 } else { 270 uint64_t valh, tmp; 271 272 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 273 mulu64(&val, &valh, val, mul); 274 mulu64(&valf, &tmp, valf, mul); 275 val += tmp; 276 valh += val < tmp; 277 278 /* Round 0.5 upward. */ 279 tmp = valf >> 63; 280 val += tmp; 281 valh += val < tmp; 282 283 /* Report overflow. */ 284 if (valh != 0) { 285 retval = -ERANGE; 286 goto out; 287 } 288 } 289 290 retval = 0; 291 292 out: 293 if (end) { 294 *end = endptr; 295 } else if (*endptr) { 296 retval = -EINVAL; 297 } 298 if (retval == 0) { 299 *result = val; 300 } 301 302 return retval; 303 } 304 305 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 306 { 307 return do_strtosz(nptr, end, 'B', 1024, result); 308 } 309 310 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 311 { 312 return do_strtosz(nptr, end, 'M', 1024, result); 313 } 314 315 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 316 { 317 return do_strtosz(nptr, end, 'B', 1000, result); 318 } 319 320 /** 321 * Helper function for error checking after strtol() and the like 322 */ 323 static int check_strtox_error(const char *nptr, char *ep, 324 const char **endptr, bool check_zero, 325 int libc_errno) 326 { 327 assert(ep >= nptr); 328 329 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ 330 if (check_zero && ep == nptr && libc_errno == 0) { 331 char *tmp; 332 333 errno = 0; 334 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && 335 (*tmp == 'x' || *tmp == 'X')) { 336 ep = tmp; 337 } 338 } 339 340 if (endptr) { 341 *endptr = ep; 342 } 343 344 /* Turn "no conversion" into an error */ 345 if (libc_errno == 0 && ep == nptr) { 346 return -EINVAL; 347 } 348 349 /* Fail when we're expected to consume the string, but didn't */ 350 if (!endptr && *ep) { 351 return -EINVAL; 352 } 353 354 return -libc_errno; 355 } 356 357 /** 358 * Convert string @nptr to an integer, and store it in @result. 359 * 360 * This is a wrapper around strtol() that is harder to misuse. 361 * Semantics of @nptr, @endptr, @base match strtol() with differences 362 * noted below. 363 * 364 * @nptr may be null, and no conversion is performed then. 365 * 366 * If no conversion is performed, store @nptr in *@endptr and return 367 * -EINVAL. 368 * 369 * If @endptr is null, and the string isn't fully converted, return 370 * -EINVAL. This is the case when the pointer that would be stored in 371 * a non-null @endptr points to a character other than '\0'. 372 * 373 * If the conversion overflows @result, store INT_MAX in @result, 374 * and return -ERANGE. 375 * 376 * If the conversion underflows @result, store INT_MIN in @result, 377 * and return -ERANGE. 378 * 379 * Else store the converted value in @result, and return zero. 380 */ 381 int qemu_strtoi(const char *nptr, const char **endptr, int base, 382 int *result) 383 { 384 char *ep; 385 long long lresult; 386 387 assert((unsigned) base <= 36 && base != 1); 388 if (!nptr) { 389 if (endptr) { 390 *endptr = nptr; 391 } 392 return -EINVAL; 393 } 394 395 errno = 0; 396 lresult = strtoll(nptr, &ep, base); 397 if (lresult < INT_MIN) { 398 *result = INT_MIN; 399 errno = ERANGE; 400 } else if (lresult > INT_MAX) { 401 *result = INT_MAX; 402 errno = ERANGE; 403 } else { 404 *result = lresult; 405 } 406 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 407 } 408 409 /** 410 * Convert string @nptr to an unsigned integer, and store it in @result. 411 * 412 * This is a wrapper around strtoul() that is harder to misuse. 413 * Semantics of @nptr, @endptr, @base match strtoul() with differences 414 * noted below. 415 * 416 * @nptr may be null, and no conversion is performed then. 417 * 418 * If no conversion is performed, store @nptr in *@endptr and return 419 * -EINVAL. 420 * 421 * If @endptr is null, and the string isn't fully converted, return 422 * -EINVAL. This is the case when the pointer that would be stored in 423 * a non-null @endptr points to a character other than '\0'. 424 * 425 * If the conversion overflows @result, store UINT_MAX in @result, 426 * and return -ERANGE. 427 * 428 * Else store the converted value in @result, and return zero. 429 * 430 * Note that a number with a leading minus sign gets converted without 431 * the minus sign, checked for overflow (see above), then negated (in 432 * @result's type). This is exactly how strtoul() works. 433 */ 434 int qemu_strtoui(const char *nptr, const char **endptr, int base, 435 unsigned int *result) 436 { 437 char *ep; 438 long long lresult; 439 440 assert((unsigned) base <= 36 && base != 1); 441 if (!nptr) { 442 if (endptr) { 443 *endptr = nptr; 444 } 445 return -EINVAL; 446 } 447 448 errno = 0; 449 lresult = strtoull(nptr, &ep, base); 450 451 /* Windows returns 1 for negative out-of-range values. */ 452 if (errno == ERANGE) { 453 *result = -1; 454 } else { 455 if (lresult > UINT_MAX) { 456 *result = UINT_MAX; 457 errno = ERANGE; 458 } else if (lresult < INT_MIN) { 459 *result = UINT_MAX; 460 errno = ERANGE; 461 } else { 462 *result = lresult; 463 } 464 } 465 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 466 } 467 468 /** 469 * Convert string @nptr to a long integer, and store it in @result. 470 * 471 * This is a wrapper around strtol() that is harder to misuse. 472 * Semantics of @nptr, @endptr, @base match strtol() with differences 473 * noted below. 474 * 475 * @nptr may be null, and no conversion is performed then. 476 * 477 * If no conversion is performed, store @nptr in *@endptr and return 478 * -EINVAL. 479 * 480 * If @endptr is null, and the string isn't fully converted, return 481 * -EINVAL. This is the case when the pointer that would be stored in 482 * a non-null @endptr points to a character other than '\0'. 483 * 484 * If the conversion overflows @result, store LONG_MAX in @result, 485 * and return -ERANGE. 486 * 487 * If the conversion underflows @result, store LONG_MIN in @result, 488 * and return -ERANGE. 489 * 490 * Else store the converted value in @result, and return zero. 491 */ 492 int qemu_strtol(const char *nptr, const char **endptr, int base, 493 long *result) 494 { 495 char *ep; 496 497 assert((unsigned) base <= 36 && base != 1); 498 if (!nptr) { 499 if (endptr) { 500 *endptr = nptr; 501 } 502 return -EINVAL; 503 } 504 505 errno = 0; 506 *result = strtol(nptr, &ep, base); 507 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 508 } 509 510 /** 511 * Convert string @nptr to an unsigned long, and store it in @result. 512 * 513 * This is a wrapper around strtoul() that is harder to misuse. 514 * Semantics of @nptr, @endptr, @base match strtoul() with differences 515 * noted below. 516 * 517 * @nptr may be null, and no conversion is performed then. 518 * 519 * If no conversion is performed, store @nptr in *@endptr and return 520 * -EINVAL. 521 * 522 * If @endptr is null, and the string isn't fully converted, return 523 * -EINVAL. This is the case when the pointer that would be stored in 524 * a non-null @endptr points to a character other than '\0'. 525 * 526 * If the conversion overflows @result, store ULONG_MAX in @result, 527 * and return -ERANGE. 528 * 529 * Else store the converted value in @result, and return zero. 530 * 531 * Note that a number with a leading minus sign gets converted without 532 * the minus sign, checked for overflow (see above), then negated (in 533 * @result's type). This is exactly how strtoul() works. 534 */ 535 int qemu_strtoul(const char *nptr, const char **endptr, int base, 536 unsigned long *result) 537 { 538 char *ep; 539 540 assert((unsigned) base <= 36 && base != 1); 541 if (!nptr) { 542 if (endptr) { 543 *endptr = nptr; 544 } 545 return -EINVAL; 546 } 547 548 errno = 0; 549 *result = strtoul(nptr, &ep, base); 550 /* Windows returns 1 for negative out-of-range values. */ 551 if (errno == ERANGE) { 552 *result = -1; 553 } 554 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 555 } 556 557 /** 558 * Convert string @nptr to an int64_t. 559 * 560 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 561 * and INT64_MIN on underflow. 562 */ 563 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 564 int64_t *result) 565 { 566 char *ep; 567 568 assert((unsigned) base <= 36 && base != 1); 569 if (!nptr) { 570 if (endptr) { 571 *endptr = nptr; 572 } 573 return -EINVAL; 574 } 575 576 /* This assumes int64_t is long long TODO relax */ 577 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 578 errno = 0; 579 *result = strtoll(nptr, &ep, base); 580 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 581 } 582 583 /** 584 * Convert string @nptr to an uint64_t. 585 * 586 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 587 */ 588 int qemu_strtou64(const char *nptr, const char **endptr, int base, 589 uint64_t *result) 590 { 591 char *ep; 592 593 assert((unsigned) base <= 36 && base != 1); 594 if (!nptr) { 595 if (endptr) { 596 *endptr = nptr; 597 } 598 return -EINVAL; 599 } 600 601 /* This assumes uint64_t is unsigned long long TODO relax */ 602 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 603 errno = 0; 604 *result = strtoull(nptr, &ep, base); 605 /* Windows returns 1 for negative out-of-range values. */ 606 if (errno == ERANGE) { 607 *result = -1; 608 } 609 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 610 } 611 612 /** 613 * Convert string @nptr to a double. 614 * 615 * This is a wrapper around strtod() that is harder to misuse. 616 * Semantics of @nptr and @endptr match strtod() with differences 617 * noted below. 618 * 619 * @nptr may be null, and no conversion is performed then. 620 * 621 * If no conversion is performed, store @nptr in *@endptr and return 622 * -EINVAL. 623 * 624 * If @endptr is null, and the string isn't fully converted, return 625 * -EINVAL. This is the case when the pointer that would be stored in 626 * a non-null @endptr points to a character other than '\0'. 627 * 628 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 629 * on the sign, and return -ERANGE. 630 * 631 * If the conversion underflows, store +/-0.0 in @result, depending on the 632 * sign, and return -ERANGE. 633 * 634 * Else store the converted value in @result, and return zero. 635 */ 636 int qemu_strtod(const char *nptr, const char **endptr, double *result) 637 { 638 char *ep; 639 640 if (!nptr) { 641 if (endptr) { 642 *endptr = nptr; 643 } 644 return -EINVAL; 645 } 646 647 errno = 0; 648 *result = strtod(nptr, &ep); 649 return check_strtox_error(nptr, ep, endptr, false, errno); 650 } 651 652 /** 653 * Convert string @nptr to a finite double. 654 * 655 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 656 * with -EINVAL and no conversion is performed. 657 */ 658 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 659 { 660 double tmp; 661 int ret; 662 663 ret = qemu_strtod(nptr, endptr, &tmp); 664 if (!ret && !isfinite(tmp)) { 665 if (endptr) { 666 *endptr = nptr; 667 } 668 ret = -EINVAL; 669 } 670 671 if (ret != -EINVAL) { 672 *result = tmp; 673 } 674 return ret; 675 } 676 677 /** 678 * Searches for the first occurrence of 'c' in 's', and returns a pointer 679 * to the trailing null byte if none was found. 680 */ 681 #ifndef HAVE_STRCHRNUL 682 const char *qemu_strchrnul(const char *s, int c) 683 { 684 const char *e = strchr(s, c); 685 if (!e) { 686 e = s + strlen(s); 687 } 688 return e; 689 } 690 #endif 691 692 /** 693 * parse_uint: 694 * 695 * @s: String to parse 696 * @value: Destination for parsed integer value 697 * @endptr: Destination for pointer to first character not consumed 698 * @base: integer base, between 2 and 36 inclusive, or 0 699 * 700 * Parse unsigned integer 701 * 702 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 703 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 704 * 705 * If @s is null, or @base is invalid, or @s doesn't start with an 706 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 707 * return -EINVAL. 708 * 709 * Set *@endptr to point right beyond the parsed integer (even if the integer 710 * overflows or is negative, all digits will be parsed and *@endptr will 711 * point right beyond them). 712 * 713 * If the integer is negative, set *@value to 0, and return -ERANGE. 714 * 715 * If the integer overflows unsigned long long, set *@value to 716 * ULLONG_MAX, and return -ERANGE. 717 * 718 * Else, set *@value to the parsed integer, and return 0. 719 */ 720 int parse_uint(const char *s, unsigned long long *value, char **endptr, 721 int base) 722 { 723 int r = 0; 724 char *endp = (char *)s; 725 unsigned long long val = 0; 726 727 assert((unsigned) base <= 36 && base != 1); 728 if (!s) { 729 r = -EINVAL; 730 goto out; 731 } 732 733 errno = 0; 734 val = strtoull(s, &endp, base); 735 if (errno) { 736 r = -errno; 737 goto out; 738 } 739 740 if (endp == s) { 741 r = -EINVAL; 742 goto out; 743 } 744 745 /* make sure we reject negative numbers: */ 746 while (qemu_isspace(*s)) { 747 s++; 748 } 749 if (*s == '-') { 750 val = 0; 751 r = -ERANGE; 752 goto out; 753 } 754 755 out: 756 *value = val; 757 *endptr = endp; 758 return r; 759 } 760 761 /** 762 * parse_uint_full: 763 * 764 * @s: String to parse 765 * @value: Destination for parsed integer value 766 * @base: integer base, between 2 and 36 inclusive, or 0 767 * 768 * Parse unsigned integer from entire string 769 * 770 * Have the same behavior of parse_uint(), but with an additional check 771 * for additional data after the parsed number. If extra characters are present 772 * after the parsed number, the function will return -EINVAL, and *@v will 773 * be set to 0. 774 */ 775 int parse_uint_full(const char *s, unsigned long long *value, int base) 776 { 777 char *endp; 778 int r; 779 780 r = parse_uint(s, value, &endp, base); 781 if (r < 0) { 782 return r; 783 } 784 if (*endp) { 785 *value = 0; 786 return -EINVAL; 787 } 788 789 return 0; 790 } 791 792 int qemu_parse_fd(const char *param) 793 { 794 long fd; 795 char *endptr; 796 797 errno = 0; 798 fd = strtol(param, &endptr, 10); 799 if (param == endptr /* no conversion performed */ || 800 errno != 0 /* not representable as long; possibly others */ || 801 *endptr != '\0' /* final string not empty */ || 802 fd < 0 /* invalid as file descriptor */ || 803 fd > INT_MAX /* not representable as int */) { 804 return -1; 805 } 806 return fd; 807 } 808 809 /* 810 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 811 * Input is limited to 14-bit numbers 812 */ 813 int uleb128_encode_small(uint8_t *out, uint32_t n) 814 { 815 g_assert(n <= 0x3fff); 816 if (n < 0x80) { 817 *out = n; 818 return 1; 819 } else { 820 *out++ = (n & 0x7f) | 0x80; 821 *out = n >> 7; 822 return 2; 823 } 824 } 825 826 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 827 { 828 if (!(*in & 0x80)) { 829 *n = *in; 830 return 1; 831 } else { 832 *n = *in++ & 0x7f; 833 /* we exceed 14 bit number */ 834 if (*in & 0x80) { 835 return -1; 836 } 837 *n |= *in << 7; 838 return 2; 839 } 840 } 841 842 /* 843 * helper to parse debug environment variables 844 */ 845 int parse_debug_env(const char *name, int max, int initial) 846 { 847 char *debug_env = getenv(name); 848 char *inv = NULL; 849 long debug; 850 851 if (!debug_env) { 852 return initial; 853 } 854 errno = 0; 855 debug = strtol(debug_env, &inv, 10); 856 if (inv == debug_env) { 857 return initial; 858 } 859 if (debug < 0 || debug > max || errno != 0) { 860 warn_report("%s not in [0, %d]", name, max); 861 return initial; 862 } 863 return debug; 864 } 865 866 /* 867 * Return human readable string for size @val. 868 * @val can be anything that uint64_t allows (no more than "16 EiB"). 869 * Use IEC binary units like KiB, MiB, and so forth. 870 * Caller is responsible for passing it to g_free(). 871 */ 872 char *size_to_str(uint64_t val) 873 { 874 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 875 uint64_t div; 876 int i; 877 878 /* 879 * The exponent (returned in i) minus one gives us 880 * floor(log2(val * 1024 / 1000). The correction makes us 881 * switch to the higher power when the integer part is >= 1000. 882 * (see e41b509d68afb1f for more info) 883 */ 884 frexp(val / (1000.0 / 1024.0), &i); 885 i = (i - 1) / 10; 886 div = 1ULL << (i * 10); 887 888 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); 889 } 890 891 char *freq_to_str(uint64_t freq_hz) 892 { 893 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" }; 894 double freq = freq_hz; 895 size_t idx = 0; 896 897 while (freq >= 1000.0) { 898 freq /= 1000.0; 899 idx++; 900 } 901 assert(idx < ARRAY_SIZE(suffixes)); 902 903 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]); 904 } 905 906 int qemu_pstrcmp0(const char **str1, const char **str2) 907 { 908 return g_strcmp0(*str1, *str2); 909 } 910 911 static inline bool starts_with_prefix(const char *dir) 912 { 913 size_t prefix_len = strlen(CONFIG_PREFIX); 914 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 915 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 916 } 917 918 /* Return the next path component in dir, and store its length in *p_len. */ 919 static inline const char *next_component(const char *dir, int *p_len) 920 { 921 int len; 922 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 923 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 924 dir++; 925 } 926 len = 0; 927 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 928 len++; 929 } 930 *p_len = len; 931 return dir; 932 } 933 934 char *get_relocated_path(const char *dir) 935 { 936 size_t prefix_len = strlen(CONFIG_PREFIX); 937 const char *bindir = CONFIG_BINDIR; 938 const char *exec_dir = qemu_get_exec_dir(); 939 GString *result; 940 int len_dir, len_bindir; 941 942 /* Fail if qemu_init_exec_dir was not called. */ 943 assert(exec_dir[0]); 944 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { 945 return g_strdup(dir); 946 } 947 948 result = g_string_new(exec_dir); 949 950 /* Advance over common components. */ 951 len_dir = len_bindir = prefix_len; 952 do { 953 dir += len_dir; 954 bindir += len_bindir; 955 dir = next_component(dir, &len_dir); 956 bindir = next_component(bindir, &len_bindir); 957 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 958 959 /* Ascend from bindir to the common prefix with dir. */ 960 while (len_bindir) { 961 bindir += len_bindir; 962 g_string_append(result, "/.."); 963 bindir = next_component(bindir, &len_bindir); 964 } 965 966 if (*dir) { 967 assert(G_IS_DIR_SEPARATOR(dir[-1])); 968 g_string_append(result, dir - 1); 969 } 970 return g_string_free(result, false); 971 } 972