1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #include "qemu-common.h" 30 #include "qemu/ctype.h" 31 #include "qemu/cutils.h" 32 #include "qemu/error-report.h" 33 34 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 35 { 36 int len = qemu_strnlen(str, buf_size); 37 memcpy(buf, str, len); 38 memset(buf + len, pad, buf_size - len); 39 } 40 41 void pstrcpy(char *buf, int buf_size, const char *str) 42 { 43 int c; 44 char *q = buf; 45 46 if (buf_size <= 0) 47 return; 48 49 for(;;) { 50 c = *str++; 51 if (c == 0 || q >= buf + buf_size - 1) 52 break; 53 *q++ = c; 54 } 55 *q = '\0'; 56 } 57 58 /* strcat and truncate. */ 59 char *pstrcat(char *buf, int buf_size, const char *s) 60 { 61 int len; 62 len = strlen(buf); 63 if (len < buf_size) 64 pstrcpy(buf + len, buf_size - len, s); 65 return buf; 66 } 67 68 int strstart(const char *str, const char *val, const char **ptr) 69 { 70 const char *p, *q; 71 p = str; 72 q = val; 73 while (*q != '\0') { 74 if (*p != *q) 75 return 0; 76 p++; 77 q++; 78 } 79 if (ptr) 80 *ptr = p; 81 return 1; 82 } 83 84 int stristart(const char *str, const char *val, const char **ptr) 85 { 86 const char *p, *q; 87 p = str; 88 q = val; 89 while (*q != '\0') { 90 if (qemu_toupper(*p) != qemu_toupper(*q)) 91 return 0; 92 p++; 93 q++; 94 } 95 if (ptr) 96 *ptr = p; 97 return 1; 98 } 99 100 /* XXX: use host strnlen if available ? */ 101 int qemu_strnlen(const char *s, int max_len) 102 { 103 int i; 104 105 for(i = 0; i < max_len; i++) { 106 if (s[i] == '\0') { 107 break; 108 } 109 } 110 return i; 111 } 112 113 char *qemu_strsep(char **input, const char *delim) 114 { 115 char *result = *input; 116 if (result != NULL) { 117 char *p; 118 119 for (p = result; *p != '\0'; p++) { 120 if (strchr(delim, *p)) { 121 break; 122 } 123 } 124 if (*p == '\0') { 125 *input = NULL; 126 } else { 127 *p = '\0'; 128 *input = p + 1; 129 } 130 } 131 return result; 132 } 133 134 time_t mktimegm(struct tm *tm) 135 { 136 time_t t; 137 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 138 if (m < 3) { 139 m += 12; 140 y--; 141 } 142 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 143 y / 400 - 719469); 144 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 145 return t; 146 } 147 148 /* 149 * Make sure data goes on disk, but if possible do not bother to 150 * write out the inode just for timestamp updates. 151 * 152 * Unfortunately even in 2009 many operating systems do not support 153 * fdatasync and have to fall back to fsync. 154 */ 155 int qemu_fdatasync(int fd) 156 { 157 #ifdef CONFIG_FDATASYNC 158 return fdatasync(fd); 159 #else 160 return fsync(fd); 161 #endif 162 } 163 164 /** 165 * Sync changes made to the memory mapped file back to the backing 166 * storage. For POSIX compliant systems this will fallback 167 * to regular msync call. Otherwise it will trigger whole file sync 168 * (including the metadata case there is no support to skip that otherwise) 169 * 170 * @addr - start of the memory area to be synced 171 * @length - length of the are to be synced 172 * @fd - file descriptor for the file to be synced 173 * (mandatory only for POSIX non-compliant systems) 174 */ 175 int qemu_msync(void *addr, size_t length, int fd) 176 { 177 #ifdef CONFIG_POSIX 178 size_t align_mask = ~(qemu_real_host_page_size() - 1); 179 180 /** 181 * There are no strict reqs as per the length of mapping 182 * to be synced. Still the length needs to follow the address 183 * alignment changes. Additionally - round the size to the multiple 184 * of PAGE_SIZE 185 */ 186 length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1)); 187 length = (length + ~align_mask) & align_mask; 188 189 addr = (void *)((uintptr_t)addr & align_mask); 190 191 return msync(addr, length, MS_SYNC); 192 #else /* CONFIG_POSIX */ 193 /** 194 * Perform the sync based on the file descriptor 195 * The sync range will most probably be wider than the one 196 * requested - but it will still get the job done 197 */ 198 return qemu_fdatasync(fd); 199 #endif /* CONFIG_POSIX */ 200 } 201 202 #ifndef _WIN32 203 /* Sets a specific flag */ 204 int fcntl_setfl(int fd, int flag) 205 { 206 int flags; 207 208 flags = fcntl(fd, F_GETFL); 209 if (flags == -1) 210 return -errno; 211 212 if (fcntl(fd, F_SETFL, flags | flag) == -1) 213 return -errno; 214 215 return 0; 216 } 217 #endif 218 219 static int64_t suffix_mul(char suffix, int64_t unit) 220 { 221 switch (qemu_toupper(suffix)) { 222 case 'B': 223 return 1; 224 case 'K': 225 return unit; 226 case 'M': 227 return unit * unit; 228 case 'G': 229 return unit * unit * unit; 230 case 'T': 231 return unit * unit * unit * unit; 232 case 'P': 233 return unit * unit * unit * unit * unit; 234 case 'E': 235 return unit * unit * unit * unit * unit * unit; 236 } 237 return -1; 238 } 239 240 /* 241 * Convert size string to bytes. 242 * 243 * The size parsing supports the following syntaxes 244 * - 12345 - decimal, scale determined by @default_suffix and @unit 245 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 246 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 247 * fractional portion is truncated to byte 248 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 249 * 250 * The following cause a deprecation warning, and may be removed in the future 251 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix 252 * 253 * The following are intentionally not supported 254 * - octal, such as 08 255 * - fractional hex, such as 0x1.8 256 * - floating point exponents, such as 1e3 257 * 258 * The end pointer will be returned in *end, if not NULL. If there is 259 * no fraction, the input can be decimal or hexadecimal; if there is a 260 * fraction, then the input must be decimal and there must be a suffix 261 * (possibly by @default_suffix) larger than Byte, and the fractional 262 * portion may suffer from precision loss or rounding. The input must 263 * be positive. 264 * 265 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 266 * other error (with *@end left unchanged). 267 */ 268 static int do_strtosz(const char *nptr, const char **end, 269 const char default_suffix, int64_t unit, 270 uint64_t *result) 271 { 272 int retval; 273 const char *endptr, *f; 274 unsigned char c; 275 bool hex = false; 276 uint64_t val, valf = 0; 277 int64_t mul; 278 279 /* Parse integral portion as decimal. */ 280 retval = qemu_strtou64(nptr, &endptr, 10, &val); 281 if (retval) { 282 goto out; 283 } 284 if (memchr(nptr, '-', endptr - nptr) != NULL) { 285 endptr = nptr; 286 retval = -EINVAL; 287 goto out; 288 } 289 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { 290 /* Input looks like hex, reparse, and insist on no fraction. */ 291 retval = qemu_strtou64(nptr, &endptr, 16, &val); 292 if (retval) { 293 goto out; 294 } 295 if (*endptr == '.') { 296 endptr = nptr; 297 retval = -EINVAL; 298 goto out; 299 } 300 hex = true; 301 } else if (*endptr == '.') { 302 /* 303 * Input looks like a fraction. Make sure even 1.k works 304 * without fractional digits. If we see an exponent, treat 305 * the entire input as invalid instead. 306 */ 307 double fraction; 308 309 f = endptr; 310 retval = qemu_strtod_finite(f, &endptr, &fraction); 311 if (retval) { 312 endptr++; 313 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { 314 endptr = nptr; 315 retval = -EINVAL; 316 goto out; 317 } else { 318 /* Extract into a 64-bit fixed-point fraction. */ 319 valf = (uint64_t)(fraction * 0x1p64); 320 } 321 } 322 c = *endptr; 323 mul = suffix_mul(c, unit); 324 if (mul > 0) { 325 if (hex) { 326 warn_report("Using a multiplier suffix on hex numbers " 327 "is deprecated: %s", nptr); 328 } 329 endptr++; 330 } else { 331 mul = suffix_mul(default_suffix, unit); 332 assert(mul > 0); 333 } 334 if (mul == 1) { 335 /* When a fraction is present, a scale is required. */ 336 if (valf != 0) { 337 endptr = nptr; 338 retval = -EINVAL; 339 goto out; 340 } 341 } else { 342 uint64_t valh, tmp; 343 344 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 345 mulu64(&val, &valh, val, mul); 346 mulu64(&valf, &tmp, valf, mul); 347 val += tmp; 348 valh += val < tmp; 349 350 /* Round 0.5 upward. */ 351 tmp = valf >> 63; 352 val += tmp; 353 valh += val < tmp; 354 355 /* Report overflow. */ 356 if (valh != 0) { 357 retval = -ERANGE; 358 goto out; 359 } 360 } 361 362 retval = 0; 363 364 out: 365 if (end) { 366 *end = endptr; 367 } else if (*endptr) { 368 retval = -EINVAL; 369 } 370 if (retval == 0) { 371 *result = val; 372 } 373 374 return retval; 375 } 376 377 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 378 { 379 return do_strtosz(nptr, end, 'B', 1024, result); 380 } 381 382 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 383 { 384 return do_strtosz(nptr, end, 'M', 1024, result); 385 } 386 387 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 388 { 389 return do_strtosz(nptr, end, 'B', 1000, result); 390 } 391 392 /** 393 * Helper function for error checking after strtol() and the like 394 */ 395 static int check_strtox_error(const char *nptr, char *ep, 396 const char **endptr, bool check_zero, 397 int libc_errno) 398 { 399 assert(ep >= nptr); 400 401 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ 402 if (check_zero && ep == nptr && libc_errno == 0) { 403 char *tmp; 404 405 errno = 0; 406 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && 407 (*tmp == 'x' || *tmp == 'X')) { 408 ep = tmp; 409 } 410 } 411 412 if (endptr) { 413 *endptr = ep; 414 } 415 416 /* Turn "no conversion" into an error */ 417 if (libc_errno == 0 && ep == nptr) { 418 return -EINVAL; 419 } 420 421 /* Fail when we're expected to consume the string, but didn't */ 422 if (!endptr && *ep) { 423 return -EINVAL; 424 } 425 426 return -libc_errno; 427 } 428 429 /** 430 * Convert string @nptr to an integer, and store it in @result. 431 * 432 * This is a wrapper around strtol() that is harder to misuse. 433 * Semantics of @nptr, @endptr, @base match strtol() with differences 434 * noted below. 435 * 436 * @nptr may be null, and no conversion is performed then. 437 * 438 * If no conversion is performed, store @nptr in *@endptr and return 439 * -EINVAL. 440 * 441 * If @endptr is null, and the string isn't fully converted, return 442 * -EINVAL. This is the case when the pointer that would be stored in 443 * a non-null @endptr points to a character other than '\0'. 444 * 445 * If the conversion overflows @result, store INT_MAX in @result, 446 * and return -ERANGE. 447 * 448 * If the conversion underflows @result, store INT_MIN in @result, 449 * and return -ERANGE. 450 * 451 * Else store the converted value in @result, and return zero. 452 */ 453 int qemu_strtoi(const char *nptr, const char **endptr, int base, 454 int *result) 455 { 456 char *ep; 457 long long lresult; 458 459 assert((unsigned) base <= 36 && base != 1); 460 if (!nptr) { 461 if (endptr) { 462 *endptr = nptr; 463 } 464 return -EINVAL; 465 } 466 467 errno = 0; 468 lresult = strtoll(nptr, &ep, base); 469 if (lresult < INT_MIN) { 470 *result = INT_MIN; 471 errno = ERANGE; 472 } else if (lresult > INT_MAX) { 473 *result = INT_MAX; 474 errno = ERANGE; 475 } else { 476 *result = lresult; 477 } 478 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 479 } 480 481 /** 482 * Convert string @nptr to an unsigned integer, and store it in @result. 483 * 484 * This is a wrapper around strtoul() that is harder to misuse. 485 * Semantics of @nptr, @endptr, @base match strtoul() with differences 486 * noted below. 487 * 488 * @nptr may be null, and no conversion is performed then. 489 * 490 * If no conversion is performed, store @nptr in *@endptr and return 491 * -EINVAL. 492 * 493 * If @endptr is null, and the string isn't fully converted, return 494 * -EINVAL. This is the case when the pointer that would be stored in 495 * a non-null @endptr points to a character other than '\0'. 496 * 497 * If the conversion overflows @result, store UINT_MAX in @result, 498 * and return -ERANGE. 499 * 500 * Else store the converted value in @result, and return zero. 501 * 502 * Note that a number with a leading minus sign gets converted without 503 * the minus sign, checked for overflow (see above), then negated (in 504 * @result's type). This is exactly how strtoul() works. 505 */ 506 int qemu_strtoui(const char *nptr, const char **endptr, int base, 507 unsigned int *result) 508 { 509 char *ep; 510 long long lresult; 511 512 assert((unsigned) base <= 36 && base != 1); 513 if (!nptr) { 514 if (endptr) { 515 *endptr = nptr; 516 } 517 return -EINVAL; 518 } 519 520 errno = 0; 521 lresult = strtoull(nptr, &ep, base); 522 523 /* Windows returns 1 for negative out-of-range values. */ 524 if (errno == ERANGE) { 525 *result = -1; 526 } else { 527 if (lresult > UINT_MAX) { 528 *result = UINT_MAX; 529 errno = ERANGE; 530 } else if (lresult < INT_MIN) { 531 *result = UINT_MAX; 532 errno = ERANGE; 533 } else { 534 *result = lresult; 535 } 536 } 537 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 538 } 539 540 /** 541 * Convert string @nptr to a long integer, and store it in @result. 542 * 543 * This is a wrapper around strtol() that is harder to misuse. 544 * Semantics of @nptr, @endptr, @base match strtol() with differences 545 * noted below. 546 * 547 * @nptr may be null, and no conversion is performed then. 548 * 549 * If no conversion is performed, store @nptr in *@endptr and return 550 * -EINVAL. 551 * 552 * If @endptr is null, and the string isn't fully converted, return 553 * -EINVAL. This is the case when the pointer that would be stored in 554 * a non-null @endptr points to a character other than '\0'. 555 * 556 * If the conversion overflows @result, store LONG_MAX in @result, 557 * and return -ERANGE. 558 * 559 * If the conversion underflows @result, store LONG_MIN in @result, 560 * and return -ERANGE. 561 * 562 * Else store the converted value in @result, and return zero. 563 */ 564 int qemu_strtol(const char *nptr, const char **endptr, int base, 565 long *result) 566 { 567 char *ep; 568 569 assert((unsigned) base <= 36 && base != 1); 570 if (!nptr) { 571 if (endptr) { 572 *endptr = nptr; 573 } 574 return -EINVAL; 575 } 576 577 errno = 0; 578 *result = strtol(nptr, &ep, base); 579 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 580 } 581 582 /** 583 * Convert string @nptr to an unsigned long, and store it in @result. 584 * 585 * This is a wrapper around strtoul() that is harder to misuse. 586 * Semantics of @nptr, @endptr, @base match strtoul() with differences 587 * noted below. 588 * 589 * @nptr may be null, and no conversion is performed then. 590 * 591 * If no conversion is performed, store @nptr in *@endptr and return 592 * -EINVAL. 593 * 594 * If @endptr is null, and the string isn't fully converted, return 595 * -EINVAL. This is the case when the pointer that would be stored in 596 * a non-null @endptr points to a character other than '\0'. 597 * 598 * If the conversion overflows @result, store ULONG_MAX in @result, 599 * and return -ERANGE. 600 * 601 * Else store the converted value in @result, and return zero. 602 * 603 * Note that a number with a leading minus sign gets converted without 604 * the minus sign, checked for overflow (see above), then negated (in 605 * @result's type). This is exactly how strtoul() works. 606 */ 607 int qemu_strtoul(const char *nptr, const char **endptr, int base, 608 unsigned long *result) 609 { 610 char *ep; 611 612 assert((unsigned) base <= 36 && base != 1); 613 if (!nptr) { 614 if (endptr) { 615 *endptr = nptr; 616 } 617 return -EINVAL; 618 } 619 620 errno = 0; 621 *result = strtoul(nptr, &ep, base); 622 /* Windows returns 1 for negative out-of-range values. */ 623 if (errno == ERANGE) { 624 *result = -1; 625 } 626 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 627 } 628 629 /** 630 * Convert string @nptr to an int64_t. 631 * 632 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 633 * and INT64_MIN on underflow. 634 */ 635 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 636 int64_t *result) 637 { 638 char *ep; 639 640 assert((unsigned) base <= 36 && base != 1); 641 if (!nptr) { 642 if (endptr) { 643 *endptr = nptr; 644 } 645 return -EINVAL; 646 } 647 648 /* This assumes int64_t is long long TODO relax */ 649 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 650 errno = 0; 651 *result = strtoll(nptr, &ep, base); 652 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 653 } 654 655 /** 656 * Convert string @nptr to an uint64_t. 657 * 658 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 659 */ 660 int qemu_strtou64(const char *nptr, const char **endptr, int base, 661 uint64_t *result) 662 { 663 char *ep; 664 665 assert((unsigned) base <= 36 && base != 1); 666 if (!nptr) { 667 if (endptr) { 668 *endptr = nptr; 669 } 670 return -EINVAL; 671 } 672 673 /* This assumes uint64_t is unsigned long long TODO relax */ 674 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 675 errno = 0; 676 *result = strtoull(nptr, &ep, base); 677 /* Windows returns 1 for negative out-of-range values. */ 678 if (errno == ERANGE) { 679 *result = -1; 680 } 681 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 682 } 683 684 /** 685 * Convert string @nptr to a double. 686 * 687 * This is a wrapper around strtod() that is harder to misuse. 688 * Semantics of @nptr and @endptr match strtod() with differences 689 * noted below. 690 * 691 * @nptr may be null, and no conversion is performed then. 692 * 693 * If no conversion is performed, store @nptr in *@endptr and return 694 * -EINVAL. 695 * 696 * If @endptr is null, and the string isn't fully converted, return 697 * -EINVAL. This is the case when the pointer that would be stored in 698 * a non-null @endptr points to a character other than '\0'. 699 * 700 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 701 * on the sign, and return -ERANGE. 702 * 703 * If the conversion underflows, store +/-0.0 in @result, depending on the 704 * sign, and return -ERANGE. 705 * 706 * Else store the converted value in @result, and return zero. 707 */ 708 int qemu_strtod(const char *nptr, const char **endptr, double *result) 709 { 710 char *ep; 711 712 if (!nptr) { 713 if (endptr) { 714 *endptr = nptr; 715 } 716 return -EINVAL; 717 } 718 719 errno = 0; 720 *result = strtod(nptr, &ep); 721 return check_strtox_error(nptr, ep, endptr, false, errno); 722 } 723 724 /** 725 * Convert string @nptr to a finite double. 726 * 727 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 728 * with -EINVAL and no conversion is performed. 729 */ 730 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 731 { 732 double tmp; 733 int ret; 734 735 ret = qemu_strtod(nptr, endptr, &tmp); 736 if (!ret && !isfinite(tmp)) { 737 if (endptr) { 738 *endptr = nptr; 739 } 740 ret = -EINVAL; 741 } 742 743 if (ret != -EINVAL) { 744 *result = tmp; 745 } 746 return ret; 747 } 748 749 /** 750 * Searches for the first occurrence of 'c' in 's', and returns a pointer 751 * to the trailing null byte if none was found. 752 */ 753 #ifndef HAVE_STRCHRNUL 754 const char *qemu_strchrnul(const char *s, int c) 755 { 756 const char *e = strchr(s, c); 757 if (!e) { 758 e = s + strlen(s); 759 } 760 return e; 761 } 762 #endif 763 764 /** 765 * parse_uint: 766 * 767 * @s: String to parse 768 * @value: Destination for parsed integer value 769 * @endptr: Destination for pointer to first character not consumed 770 * @base: integer base, between 2 and 36 inclusive, or 0 771 * 772 * Parse unsigned integer 773 * 774 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 775 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 776 * 777 * If @s is null, or @base is invalid, or @s doesn't start with an 778 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 779 * return -EINVAL. 780 * 781 * Set *@endptr to point right beyond the parsed integer (even if the integer 782 * overflows or is negative, all digits will be parsed and *@endptr will 783 * point right beyond them). 784 * 785 * If the integer is negative, set *@value to 0, and return -ERANGE. 786 * 787 * If the integer overflows unsigned long long, set *@value to 788 * ULLONG_MAX, and return -ERANGE. 789 * 790 * Else, set *@value to the parsed integer, and return 0. 791 */ 792 int parse_uint(const char *s, unsigned long long *value, char **endptr, 793 int base) 794 { 795 int r = 0; 796 char *endp = (char *)s; 797 unsigned long long val = 0; 798 799 assert((unsigned) base <= 36 && base != 1); 800 if (!s) { 801 r = -EINVAL; 802 goto out; 803 } 804 805 errno = 0; 806 val = strtoull(s, &endp, base); 807 if (errno) { 808 r = -errno; 809 goto out; 810 } 811 812 if (endp == s) { 813 r = -EINVAL; 814 goto out; 815 } 816 817 /* make sure we reject negative numbers: */ 818 while (qemu_isspace(*s)) { 819 s++; 820 } 821 if (*s == '-') { 822 val = 0; 823 r = -ERANGE; 824 goto out; 825 } 826 827 out: 828 *value = val; 829 *endptr = endp; 830 return r; 831 } 832 833 /** 834 * parse_uint_full: 835 * 836 * @s: String to parse 837 * @value: Destination for parsed integer value 838 * @base: integer base, between 2 and 36 inclusive, or 0 839 * 840 * Parse unsigned integer from entire string 841 * 842 * Have the same behavior of parse_uint(), but with an additional check 843 * for additional data after the parsed number. If extra characters are present 844 * after the parsed number, the function will return -EINVAL, and *@v will 845 * be set to 0. 846 */ 847 int parse_uint_full(const char *s, unsigned long long *value, int base) 848 { 849 char *endp; 850 int r; 851 852 r = parse_uint(s, value, &endp, base); 853 if (r < 0) { 854 return r; 855 } 856 if (*endp) { 857 *value = 0; 858 return -EINVAL; 859 } 860 861 return 0; 862 } 863 864 int qemu_parse_fd(const char *param) 865 { 866 long fd; 867 char *endptr; 868 869 errno = 0; 870 fd = strtol(param, &endptr, 10); 871 if (param == endptr /* no conversion performed */ || 872 errno != 0 /* not representable as long; possibly others */ || 873 *endptr != '\0' /* final string not empty */ || 874 fd < 0 /* invalid as file descriptor */ || 875 fd > INT_MAX /* not representable as int */) { 876 return -1; 877 } 878 return fd; 879 } 880 881 /* 882 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 883 * Input is limited to 14-bit numbers 884 */ 885 int uleb128_encode_small(uint8_t *out, uint32_t n) 886 { 887 g_assert(n <= 0x3fff); 888 if (n < 0x80) { 889 *out = n; 890 return 1; 891 } else { 892 *out++ = (n & 0x7f) | 0x80; 893 *out = n >> 7; 894 return 2; 895 } 896 } 897 898 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 899 { 900 if (!(*in & 0x80)) { 901 *n = *in; 902 return 1; 903 } else { 904 *n = *in++ & 0x7f; 905 /* we exceed 14 bit number */ 906 if (*in & 0x80) { 907 return -1; 908 } 909 *n |= *in << 7; 910 return 2; 911 } 912 } 913 914 /* 915 * helper to parse debug environment variables 916 */ 917 int parse_debug_env(const char *name, int max, int initial) 918 { 919 char *debug_env = getenv(name); 920 char *inv = NULL; 921 long debug; 922 923 if (!debug_env) { 924 return initial; 925 } 926 errno = 0; 927 debug = strtol(debug_env, &inv, 10); 928 if (inv == debug_env) { 929 return initial; 930 } 931 if (debug < 0 || debug > max || errno != 0) { 932 warn_report("%s not in [0, %d]", name, max); 933 return initial; 934 } 935 return debug; 936 } 937 938 /* 939 * Return human readable string for size @val. 940 * @val can be anything that uint64_t allows (no more than "16 EiB"). 941 * Use IEC binary units like KiB, MiB, and so forth. 942 * Caller is responsible for passing it to g_free(). 943 */ 944 char *size_to_str(uint64_t val) 945 { 946 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 947 uint64_t div; 948 int i; 949 950 /* 951 * The exponent (returned in i) minus one gives us 952 * floor(log2(val * 1024 / 1000). The correction makes us 953 * switch to the higher power when the integer part is >= 1000. 954 * (see e41b509d68afb1f for more info) 955 */ 956 frexp(val / (1000.0 / 1024.0), &i); 957 i = (i - 1) / 10; 958 div = 1ULL << (i * 10); 959 960 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); 961 } 962 963 char *freq_to_str(uint64_t freq_hz) 964 { 965 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" }; 966 double freq = freq_hz; 967 size_t idx = 0; 968 969 while (freq >= 1000.0) { 970 freq /= 1000.0; 971 idx++; 972 } 973 assert(idx < ARRAY_SIZE(suffixes)); 974 975 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]); 976 } 977 978 int qemu_pstrcmp0(const char **str1, const char **str2) 979 { 980 return g_strcmp0(*str1, *str2); 981 } 982 983 static inline bool starts_with_prefix(const char *dir) 984 { 985 size_t prefix_len = strlen(CONFIG_PREFIX); 986 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 987 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 988 } 989 990 /* Return the next path component in dir, and store its length in *p_len. */ 991 static inline const char *next_component(const char *dir, int *p_len) 992 { 993 int len; 994 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 995 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 996 dir++; 997 } 998 len = 0; 999 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 1000 len++; 1001 } 1002 *p_len = len; 1003 return dir; 1004 } 1005 1006 char *get_relocated_path(const char *dir) 1007 { 1008 size_t prefix_len = strlen(CONFIG_PREFIX); 1009 const char *bindir = CONFIG_BINDIR; 1010 const char *exec_dir = qemu_get_exec_dir(); 1011 GString *result; 1012 int len_dir, len_bindir; 1013 1014 /* Fail if qemu_init_exec_dir was not called. */ 1015 assert(exec_dir[0]); 1016 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { 1017 return g_strdup(dir); 1018 } 1019 1020 result = g_string_new(exec_dir); 1021 1022 /* Advance over common components. */ 1023 len_dir = len_bindir = prefix_len; 1024 do { 1025 dir += len_dir; 1026 bindir += len_bindir; 1027 dir = next_component(dir, &len_dir); 1028 bindir = next_component(bindir, &len_bindir); 1029 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 1030 1031 /* Ascend from bindir to the common prefix with dir. */ 1032 while (len_bindir) { 1033 bindir += len_bindir; 1034 g_string_append(result, "/.."); 1035 bindir = next_component(bindir, &len_bindir); 1036 } 1037 1038 if (*dir) { 1039 assert(G_IS_DIR_SEPARATOR(dir[-1])); 1040 g_string_append(result, dir - 1); 1041 } 1042 return g_string_free(result, false); 1043 } 1044