1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #include "qemu-common.h" 30 #include "qemu/sockets.h" 31 #include "qemu/iov.h" 32 #include "net/net.h" 33 #include "qemu/ctype.h" 34 #include "qemu/cutils.h" 35 #include "qemu/error-report.h" 36 37 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 38 { 39 int len = qemu_strnlen(str, buf_size); 40 memcpy(buf, str, len); 41 memset(buf + len, pad, buf_size - len); 42 } 43 44 void pstrcpy(char *buf, int buf_size, const char *str) 45 { 46 int c; 47 char *q = buf; 48 49 if (buf_size <= 0) 50 return; 51 52 for(;;) { 53 c = *str++; 54 if (c == 0 || q >= buf + buf_size - 1) 55 break; 56 *q++ = c; 57 } 58 *q = '\0'; 59 } 60 61 /* strcat and truncate. */ 62 char *pstrcat(char *buf, int buf_size, const char *s) 63 { 64 int len; 65 len = strlen(buf); 66 if (len < buf_size) 67 pstrcpy(buf + len, buf_size - len, s); 68 return buf; 69 } 70 71 int strstart(const char *str, const char *val, const char **ptr) 72 { 73 const char *p, *q; 74 p = str; 75 q = val; 76 while (*q != '\0') { 77 if (*p != *q) 78 return 0; 79 p++; 80 q++; 81 } 82 if (ptr) 83 *ptr = p; 84 return 1; 85 } 86 87 int stristart(const char *str, const char *val, const char **ptr) 88 { 89 const char *p, *q; 90 p = str; 91 q = val; 92 while (*q != '\0') { 93 if (qemu_toupper(*p) != qemu_toupper(*q)) 94 return 0; 95 p++; 96 q++; 97 } 98 if (ptr) 99 *ptr = p; 100 return 1; 101 } 102 103 /* XXX: use host strnlen if available ? */ 104 int qemu_strnlen(const char *s, int max_len) 105 { 106 int i; 107 108 for(i = 0; i < max_len; i++) { 109 if (s[i] == '\0') { 110 break; 111 } 112 } 113 return i; 114 } 115 116 char *qemu_strsep(char **input, const char *delim) 117 { 118 char *result = *input; 119 if (result != NULL) { 120 char *p; 121 122 for (p = result; *p != '\0'; p++) { 123 if (strchr(delim, *p)) { 124 break; 125 } 126 } 127 if (*p == '\0') { 128 *input = NULL; 129 } else { 130 *p = '\0'; 131 *input = p + 1; 132 } 133 } 134 return result; 135 } 136 137 time_t mktimegm(struct tm *tm) 138 { 139 time_t t; 140 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 141 if (m < 3) { 142 m += 12; 143 y--; 144 } 145 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 146 y / 400 - 719469); 147 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 148 return t; 149 } 150 151 /* 152 * Make sure data goes on disk, but if possible do not bother to 153 * write out the inode just for timestamp updates. 154 * 155 * Unfortunately even in 2009 many operating systems do not support 156 * fdatasync and have to fall back to fsync. 157 */ 158 int qemu_fdatasync(int fd) 159 { 160 #ifdef CONFIG_FDATASYNC 161 return fdatasync(fd); 162 #else 163 return fsync(fd); 164 #endif 165 } 166 167 /** 168 * Sync changes made to the memory mapped file back to the backing 169 * storage. For POSIX compliant systems this will fallback 170 * to regular msync call. Otherwise it will trigger whole file sync 171 * (including the metadata case there is no support to skip that otherwise) 172 * 173 * @addr - start of the memory area to be synced 174 * @length - length of the are to be synced 175 * @fd - file descriptor for the file to be synced 176 * (mandatory only for POSIX non-compliant systems) 177 */ 178 int qemu_msync(void *addr, size_t length, int fd) 179 { 180 #ifdef CONFIG_POSIX 181 size_t align_mask = ~(qemu_real_host_page_size - 1); 182 183 /** 184 * There are no strict reqs as per the length of mapping 185 * to be synced. Still the length needs to follow the address 186 * alignment changes. Additionally - round the size to the multiple 187 * of PAGE_SIZE 188 */ 189 length += ((uintptr_t)addr & (qemu_real_host_page_size - 1)); 190 length = (length + ~align_mask) & align_mask; 191 192 addr = (void *)((uintptr_t)addr & align_mask); 193 194 return msync(addr, length, MS_SYNC); 195 #else /* CONFIG_POSIX */ 196 /** 197 * Perform the sync based on the file descriptor 198 * The sync range will most probably be wider than the one 199 * requested - but it will still get the job done 200 */ 201 return qemu_fdatasync(fd); 202 #endif /* CONFIG_POSIX */ 203 } 204 205 #ifndef _WIN32 206 /* Sets a specific flag */ 207 int fcntl_setfl(int fd, int flag) 208 { 209 int flags; 210 211 flags = fcntl(fd, F_GETFL); 212 if (flags == -1) 213 return -errno; 214 215 if (fcntl(fd, F_SETFL, flags | flag) == -1) 216 return -errno; 217 218 return 0; 219 } 220 #endif 221 222 static int64_t suffix_mul(char suffix, int64_t unit) 223 { 224 switch (qemu_toupper(suffix)) { 225 case 'B': 226 return 1; 227 case 'K': 228 return unit; 229 case 'M': 230 return unit * unit; 231 case 'G': 232 return unit * unit * unit; 233 case 'T': 234 return unit * unit * unit * unit; 235 case 'P': 236 return unit * unit * unit * unit * unit; 237 case 'E': 238 return unit * unit * unit * unit * unit * unit; 239 } 240 return -1; 241 } 242 243 /* 244 * Convert size string to bytes. 245 * 246 * The size parsing supports the following syntaxes 247 * - 12345 - decimal, scale determined by @default_suffix and @unit 248 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 249 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 250 * fractional portion is truncated to byte 251 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 252 * 253 * The following cause a deprecation warning, and may be removed in the future 254 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix 255 * 256 * The following are intentionally not supported 257 * - octal, such as 08 258 * - fractional hex, such as 0x1.8 259 * - floating point exponents, such as 1e3 260 * 261 * The end pointer will be returned in *end, if not NULL. If there is 262 * no fraction, the input can be decimal or hexadecimal; if there is a 263 * fraction, then the input must be decimal and there must be a suffix 264 * (possibly by @default_suffix) larger than Byte, and the fractional 265 * portion may suffer from precision loss or rounding. The input must 266 * be positive. 267 * 268 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 269 * other error (with *@end left unchanged). 270 */ 271 static int do_strtosz(const char *nptr, const char **end, 272 const char default_suffix, int64_t unit, 273 uint64_t *result) 274 { 275 int retval; 276 const char *endptr, *f; 277 unsigned char c; 278 bool hex = false; 279 uint64_t val, valf = 0; 280 int64_t mul; 281 282 /* Parse integral portion as decimal. */ 283 retval = qemu_strtou64(nptr, &endptr, 10, &val); 284 if (retval) { 285 goto out; 286 } 287 if (memchr(nptr, '-', endptr - nptr) != NULL) { 288 endptr = nptr; 289 retval = -EINVAL; 290 goto out; 291 } 292 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { 293 /* Input looks like hex, reparse, and insist on no fraction. */ 294 retval = qemu_strtou64(nptr, &endptr, 16, &val); 295 if (retval) { 296 goto out; 297 } 298 if (*endptr == '.') { 299 endptr = nptr; 300 retval = -EINVAL; 301 goto out; 302 } 303 hex = true; 304 } else if (*endptr == '.') { 305 /* 306 * Input looks like a fraction. Make sure even 1.k works 307 * without fractional digits. If we see an exponent, treat 308 * the entire input as invalid instead. 309 */ 310 double fraction; 311 312 f = endptr; 313 retval = qemu_strtod_finite(f, &endptr, &fraction); 314 if (retval) { 315 endptr++; 316 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { 317 endptr = nptr; 318 retval = -EINVAL; 319 goto out; 320 } else { 321 /* Extract into a 64-bit fixed-point fraction. */ 322 valf = (uint64_t)(fraction * 0x1p64); 323 } 324 } 325 c = *endptr; 326 mul = suffix_mul(c, unit); 327 if (mul > 0) { 328 if (hex) { 329 warn_report("Using a multiplier suffix on hex numbers " 330 "is deprecated: %s", nptr); 331 } 332 endptr++; 333 } else { 334 mul = suffix_mul(default_suffix, unit); 335 assert(mul > 0); 336 } 337 if (mul == 1) { 338 /* When a fraction is present, a scale is required. */ 339 if (valf != 0) { 340 endptr = nptr; 341 retval = -EINVAL; 342 goto out; 343 } 344 } else { 345 uint64_t valh, tmp; 346 347 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 348 mulu64(&val, &valh, val, mul); 349 mulu64(&valf, &tmp, valf, mul); 350 val += tmp; 351 valh += val < tmp; 352 353 /* Round 0.5 upward. */ 354 tmp = valf >> 63; 355 val += tmp; 356 valh += val < tmp; 357 358 /* Report overflow. */ 359 if (valh != 0) { 360 retval = -ERANGE; 361 goto out; 362 } 363 } 364 365 *result = val; 366 retval = 0; 367 368 out: 369 if (end) { 370 *end = endptr; 371 } else if (*endptr) { 372 retval = -EINVAL; 373 } 374 375 return retval; 376 } 377 378 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 379 { 380 return do_strtosz(nptr, end, 'B', 1024, result); 381 } 382 383 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 384 { 385 return do_strtosz(nptr, end, 'M', 1024, result); 386 } 387 388 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 389 { 390 return do_strtosz(nptr, end, 'B', 1000, result); 391 } 392 393 /** 394 * Helper function for error checking after strtol() and the like 395 */ 396 static int check_strtox_error(const char *nptr, char *ep, 397 const char **endptr, int libc_errno) 398 { 399 assert(ep >= nptr); 400 if (endptr) { 401 *endptr = ep; 402 } 403 404 /* Turn "no conversion" into an error */ 405 if (libc_errno == 0 && ep == nptr) { 406 return -EINVAL; 407 } 408 409 /* Fail when we're expected to consume the string, but didn't */ 410 if (!endptr && *ep) { 411 return -EINVAL; 412 } 413 414 return -libc_errno; 415 } 416 417 /** 418 * Convert string @nptr to an integer, and store it in @result. 419 * 420 * This is a wrapper around strtol() that is harder to misuse. 421 * Semantics of @nptr, @endptr, @base match strtol() with differences 422 * noted below. 423 * 424 * @nptr may be null, and no conversion is performed then. 425 * 426 * If no conversion is performed, store @nptr in *@endptr and return 427 * -EINVAL. 428 * 429 * If @endptr is null, and the string isn't fully converted, return 430 * -EINVAL. This is the case when the pointer that would be stored in 431 * a non-null @endptr points to a character other than '\0'. 432 * 433 * If the conversion overflows @result, store INT_MAX in @result, 434 * and return -ERANGE. 435 * 436 * If the conversion underflows @result, store INT_MIN in @result, 437 * and return -ERANGE. 438 * 439 * Else store the converted value in @result, and return zero. 440 */ 441 int qemu_strtoi(const char *nptr, const char **endptr, int base, 442 int *result) 443 { 444 char *ep; 445 long long lresult; 446 447 assert((unsigned) base <= 36 && base != 1); 448 if (!nptr) { 449 if (endptr) { 450 *endptr = nptr; 451 } 452 return -EINVAL; 453 } 454 455 errno = 0; 456 lresult = strtoll(nptr, &ep, base); 457 if (lresult < INT_MIN) { 458 *result = INT_MIN; 459 errno = ERANGE; 460 } else if (lresult > INT_MAX) { 461 *result = INT_MAX; 462 errno = ERANGE; 463 } else { 464 *result = lresult; 465 } 466 return check_strtox_error(nptr, ep, endptr, errno); 467 } 468 469 /** 470 * Convert string @nptr to an unsigned integer, and store it in @result. 471 * 472 * This is a wrapper around strtoul() that is harder to misuse. 473 * Semantics of @nptr, @endptr, @base match strtoul() with differences 474 * noted below. 475 * 476 * @nptr may be null, and no conversion is performed then. 477 * 478 * If no conversion is performed, store @nptr in *@endptr and return 479 * -EINVAL. 480 * 481 * If @endptr is null, and the string isn't fully converted, return 482 * -EINVAL. This is the case when the pointer that would be stored in 483 * a non-null @endptr points to a character other than '\0'. 484 * 485 * If the conversion overflows @result, store UINT_MAX in @result, 486 * and return -ERANGE. 487 * 488 * Else store the converted value in @result, and return zero. 489 * 490 * Note that a number with a leading minus sign gets converted without 491 * the minus sign, checked for overflow (see above), then negated (in 492 * @result's type). This is exactly how strtoul() works. 493 */ 494 int qemu_strtoui(const char *nptr, const char **endptr, int base, 495 unsigned int *result) 496 { 497 char *ep; 498 long long lresult; 499 500 assert((unsigned) base <= 36 && base != 1); 501 if (!nptr) { 502 if (endptr) { 503 *endptr = nptr; 504 } 505 return -EINVAL; 506 } 507 508 errno = 0; 509 lresult = strtoull(nptr, &ep, base); 510 511 /* Windows returns 1 for negative out-of-range values. */ 512 if (errno == ERANGE) { 513 *result = -1; 514 } else { 515 if (lresult > UINT_MAX) { 516 *result = UINT_MAX; 517 errno = ERANGE; 518 } else if (lresult < INT_MIN) { 519 *result = UINT_MAX; 520 errno = ERANGE; 521 } else { 522 *result = lresult; 523 } 524 } 525 return check_strtox_error(nptr, ep, endptr, errno); 526 } 527 528 /** 529 * Convert string @nptr to a long integer, and store it in @result. 530 * 531 * This is a wrapper around strtol() that is harder to misuse. 532 * Semantics of @nptr, @endptr, @base match strtol() with differences 533 * noted below. 534 * 535 * @nptr may be null, and no conversion is performed then. 536 * 537 * If no conversion is performed, store @nptr in *@endptr and return 538 * -EINVAL. 539 * 540 * If @endptr is null, and the string isn't fully converted, return 541 * -EINVAL. This is the case when the pointer that would be stored in 542 * a non-null @endptr points to a character other than '\0'. 543 * 544 * If the conversion overflows @result, store LONG_MAX in @result, 545 * and return -ERANGE. 546 * 547 * If the conversion underflows @result, store LONG_MIN in @result, 548 * and return -ERANGE. 549 * 550 * Else store the converted value in @result, and return zero. 551 */ 552 int qemu_strtol(const char *nptr, const char **endptr, int base, 553 long *result) 554 { 555 char *ep; 556 557 assert((unsigned) base <= 36 && base != 1); 558 if (!nptr) { 559 if (endptr) { 560 *endptr = nptr; 561 } 562 return -EINVAL; 563 } 564 565 errno = 0; 566 *result = strtol(nptr, &ep, base); 567 return check_strtox_error(nptr, ep, endptr, errno); 568 } 569 570 /** 571 * Convert string @nptr to an unsigned long, and store it in @result. 572 * 573 * This is a wrapper around strtoul() that is harder to misuse. 574 * Semantics of @nptr, @endptr, @base match strtoul() with differences 575 * noted below. 576 * 577 * @nptr may be null, and no conversion is performed then. 578 * 579 * If no conversion is performed, store @nptr in *@endptr and return 580 * -EINVAL. 581 * 582 * If @endptr is null, and the string isn't fully converted, return 583 * -EINVAL. This is the case when the pointer that would be stored in 584 * a non-null @endptr points to a character other than '\0'. 585 * 586 * If the conversion overflows @result, store ULONG_MAX in @result, 587 * and return -ERANGE. 588 * 589 * Else store the converted value in @result, and return zero. 590 * 591 * Note that a number with a leading minus sign gets converted without 592 * the minus sign, checked for overflow (see above), then negated (in 593 * @result's type). This is exactly how strtoul() works. 594 */ 595 int qemu_strtoul(const char *nptr, const char **endptr, int base, 596 unsigned long *result) 597 { 598 char *ep; 599 600 assert((unsigned) base <= 36 && base != 1); 601 if (!nptr) { 602 if (endptr) { 603 *endptr = nptr; 604 } 605 return -EINVAL; 606 } 607 608 errno = 0; 609 *result = strtoul(nptr, &ep, base); 610 /* Windows returns 1 for negative out-of-range values. */ 611 if (errno == ERANGE) { 612 *result = -1; 613 } 614 return check_strtox_error(nptr, ep, endptr, errno); 615 } 616 617 /** 618 * Convert string @nptr to an int64_t. 619 * 620 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 621 * and INT64_MIN on underflow. 622 */ 623 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 624 int64_t *result) 625 { 626 char *ep; 627 628 assert((unsigned) base <= 36 && base != 1); 629 if (!nptr) { 630 if (endptr) { 631 *endptr = nptr; 632 } 633 return -EINVAL; 634 } 635 636 /* This assumes int64_t is long long TODO relax */ 637 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 638 errno = 0; 639 *result = strtoll(nptr, &ep, base); 640 return check_strtox_error(nptr, ep, endptr, errno); 641 } 642 643 /** 644 * Convert string @nptr to an uint64_t. 645 * 646 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 647 */ 648 int qemu_strtou64(const char *nptr, const char **endptr, int base, 649 uint64_t *result) 650 { 651 char *ep; 652 653 assert((unsigned) base <= 36 && base != 1); 654 if (!nptr) { 655 if (endptr) { 656 *endptr = nptr; 657 } 658 return -EINVAL; 659 } 660 661 /* This assumes uint64_t is unsigned long long TODO relax */ 662 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 663 errno = 0; 664 *result = strtoull(nptr, &ep, base); 665 /* Windows returns 1 for negative out-of-range values. */ 666 if (errno == ERANGE) { 667 *result = -1; 668 } 669 return check_strtox_error(nptr, ep, endptr, errno); 670 } 671 672 /** 673 * Convert string @nptr to a double. 674 * 675 * This is a wrapper around strtod() that is harder to misuse. 676 * Semantics of @nptr and @endptr match strtod() with differences 677 * noted below. 678 * 679 * @nptr may be null, and no conversion is performed then. 680 * 681 * If no conversion is performed, store @nptr in *@endptr and return 682 * -EINVAL. 683 * 684 * If @endptr is null, and the string isn't fully converted, return 685 * -EINVAL. This is the case when the pointer that would be stored in 686 * a non-null @endptr points to a character other than '\0'. 687 * 688 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 689 * on the sign, and return -ERANGE. 690 * 691 * If the conversion underflows, store +/-0.0 in @result, depending on the 692 * sign, and return -ERANGE. 693 * 694 * Else store the converted value in @result, and return zero. 695 */ 696 int qemu_strtod(const char *nptr, const char **endptr, double *result) 697 { 698 char *ep; 699 700 if (!nptr) { 701 if (endptr) { 702 *endptr = nptr; 703 } 704 return -EINVAL; 705 } 706 707 errno = 0; 708 *result = strtod(nptr, &ep); 709 return check_strtox_error(nptr, ep, endptr, errno); 710 } 711 712 /** 713 * Convert string @nptr to a finite double. 714 * 715 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 716 * with -EINVAL and no conversion is performed. 717 */ 718 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 719 { 720 double tmp; 721 int ret; 722 723 ret = qemu_strtod(nptr, endptr, &tmp); 724 if (!ret && !isfinite(tmp)) { 725 if (endptr) { 726 *endptr = nptr; 727 } 728 ret = -EINVAL; 729 } 730 731 if (ret != -EINVAL) { 732 *result = tmp; 733 } 734 return ret; 735 } 736 737 /** 738 * Searches for the first occurrence of 'c' in 's', and returns a pointer 739 * to the trailing null byte if none was found. 740 */ 741 #ifndef HAVE_STRCHRNUL 742 const char *qemu_strchrnul(const char *s, int c) 743 { 744 const char *e = strchr(s, c); 745 if (!e) { 746 e = s + strlen(s); 747 } 748 return e; 749 } 750 #endif 751 752 /** 753 * parse_uint: 754 * 755 * @s: String to parse 756 * @value: Destination for parsed integer value 757 * @endptr: Destination for pointer to first character not consumed 758 * @base: integer base, between 2 and 36 inclusive, or 0 759 * 760 * Parse unsigned integer 761 * 762 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 763 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 764 * 765 * If @s is null, or @base is invalid, or @s doesn't start with an 766 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 767 * return -EINVAL. 768 * 769 * Set *@endptr to point right beyond the parsed integer (even if the integer 770 * overflows or is negative, all digits will be parsed and *@endptr will 771 * point right beyond them). 772 * 773 * If the integer is negative, set *@value to 0, and return -ERANGE. 774 * 775 * If the integer overflows unsigned long long, set *@value to 776 * ULLONG_MAX, and return -ERANGE. 777 * 778 * Else, set *@value to the parsed integer, and return 0. 779 */ 780 int parse_uint(const char *s, unsigned long long *value, char **endptr, 781 int base) 782 { 783 int r = 0; 784 char *endp = (char *)s; 785 unsigned long long val = 0; 786 787 assert((unsigned) base <= 36 && base != 1); 788 if (!s) { 789 r = -EINVAL; 790 goto out; 791 } 792 793 errno = 0; 794 val = strtoull(s, &endp, base); 795 if (errno) { 796 r = -errno; 797 goto out; 798 } 799 800 if (endp == s) { 801 r = -EINVAL; 802 goto out; 803 } 804 805 /* make sure we reject negative numbers: */ 806 while (qemu_isspace(*s)) { 807 s++; 808 } 809 if (*s == '-') { 810 val = 0; 811 r = -ERANGE; 812 goto out; 813 } 814 815 out: 816 *value = val; 817 *endptr = endp; 818 return r; 819 } 820 821 /** 822 * parse_uint_full: 823 * 824 * @s: String to parse 825 * @value: Destination for parsed integer value 826 * @base: integer base, between 2 and 36 inclusive, or 0 827 * 828 * Parse unsigned integer from entire string 829 * 830 * Have the same behavior of parse_uint(), but with an additional check 831 * for additional data after the parsed number. If extra characters are present 832 * after the parsed number, the function will return -EINVAL, and *@v will 833 * be set to 0. 834 */ 835 int parse_uint_full(const char *s, unsigned long long *value, int base) 836 { 837 char *endp; 838 int r; 839 840 r = parse_uint(s, value, &endp, base); 841 if (r < 0) { 842 return r; 843 } 844 if (*endp) { 845 *value = 0; 846 return -EINVAL; 847 } 848 849 return 0; 850 } 851 852 int qemu_parse_fd(const char *param) 853 { 854 long fd; 855 char *endptr; 856 857 errno = 0; 858 fd = strtol(param, &endptr, 10); 859 if (param == endptr /* no conversion performed */ || 860 errno != 0 /* not representable as long; possibly others */ || 861 *endptr != '\0' /* final string not empty */ || 862 fd < 0 /* invalid as file descriptor */ || 863 fd > INT_MAX /* not representable as int */) { 864 return -1; 865 } 866 return fd; 867 } 868 869 /* 870 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 871 * Input is limited to 14-bit numbers 872 */ 873 int uleb128_encode_small(uint8_t *out, uint32_t n) 874 { 875 g_assert(n <= 0x3fff); 876 if (n < 0x80) { 877 *out = n; 878 return 1; 879 } else { 880 *out++ = (n & 0x7f) | 0x80; 881 *out = n >> 7; 882 return 2; 883 } 884 } 885 886 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 887 { 888 if (!(*in & 0x80)) { 889 *n = *in; 890 return 1; 891 } else { 892 *n = *in++ & 0x7f; 893 /* we exceed 14 bit number */ 894 if (*in & 0x80) { 895 return -1; 896 } 897 *n |= *in << 7; 898 return 2; 899 } 900 } 901 902 /* 903 * helper to parse debug environment variables 904 */ 905 int parse_debug_env(const char *name, int max, int initial) 906 { 907 char *debug_env = getenv(name); 908 char *inv = NULL; 909 long debug; 910 911 if (!debug_env) { 912 return initial; 913 } 914 errno = 0; 915 debug = strtol(debug_env, &inv, 10); 916 if (inv == debug_env) { 917 return initial; 918 } 919 if (debug < 0 || debug > max || errno != 0) { 920 warn_report("%s not in [0, %d]", name, max); 921 return initial; 922 } 923 return debug; 924 } 925 926 /* 927 * Helper to print ethernet mac address 928 */ 929 const char *qemu_ether_ntoa(const MACAddr *mac) 930 { 931 static char ret[18]; 932 933 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x", 934 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]); 935 936 return ret; 937 } 938 939 /* 940 * Return human readable string for size @val. 941 * @val can be anything that uint64_t allows (no more than "16 EiB"). 942 * Use IEC binary units like KiB, MiB, and so forth. 943 * Caller is responsible for passing it to g_free(). 944 */ 945 char *size_to_str(uint64_t val) 946 { 947 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 948 uint64_t div; 949 int i; 950 951 /* 952 * The exponent (returned in i) minus one gives us 953 * floor(log2(val * 1024 / 1000). The correction makes us 954 * switch to the higher power when the integer part is >= 1000. 955 * (see e41b509d68afb1f for more info) 956 */ 957 frexp(val / (1000.0 / 1024.0), &i); 958 i = (i - 1) / 10; 959 div = 1ULL << (i * 10); 960 961 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); 962 } 963 964 char *freq_to_str(uint64_t freq_hz) 965 { 966 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" }; 967 double freq = freq_hz; 968 size_t idx = 0; 969 970 while (freq >= 1000.0) { 971 freq /= 1000.0; 972 idx++; 973 } 974 assert(idx < ARRAY_SIZE(suffixes)); 975 976 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]); 977 } 978 979 int qemu_pstrcmp0(const char **str1, const char **str2) 980 { 981 return g_strcmp0(*str1, *str2); 982 } 983 984 static inline bool starts_with_prefix(const char *dir) 985 { 986 size_t prefix_len = strlen(CONFIG_PREFIX); 987 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 988 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 989 } 990 991 /* Return the next path component in dir, and store its length in *p_len. */ 992 static inline const char *next_component(const char *dir, int *p_len) 993 { 994 int len; 995 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 996 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 997 dir++; 998 } 999 len = 0; 1000 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 1001 len++; 1002 } 1003 *p_len = len; 1004 return dir; 1005 } 1006 1007 char *get_relocated_path(const char *dir) 1008 { 1009 size_t prefix_len = strlen(CONFIG_PREFIX); 1010 const char *bindir = CONFIG_BINDIR; 1011 const char *exec_dir = qemu_get_exec_dir(); 1012 GString *result; 1013 int len_dir, len_bindir; 1014 1015 /* Fail if qemu_init_exec_dir was not called. */ 1016 assert(exec_dir[0]); 1017 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { 1018 return g_strdup(dir); 1019 } 1020 1021 result = g_string_new(exec_dir); 1022 1023 /* Advance over common components. */ 1024 len_dir = len_bindir = prefix_len; 1025 do { 1026 dir += len_dir; 1027 bindir += len_bindir; 1028 dir = next_component(dir, &len_dir); 1029 bindir = next_component(bindir, &len_bindir); 1030 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 1031 1032 /* Ascend from bindir to the common prefix with dir. */ 1033 while (len_bindir) { 1034 bindir += len_bindir; 1035 g_string_append(result, "/.."); 1036 bindir = next_component(bindir, &len_bindir); 1037 } 1038 1039 if (*dir) { 1040 assert(G_IS_DIR_SEPARATOR(dir[-1])); 1041 g_string_append(result, dir - 1); 1042 } 1043 return result->str; 1044 } 1045