1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #include "qemu-common.h" 30 #include "qemu/sockets.h" 31 #include "qemu/iov.h" 32 #include "net/net.h" 33 #include "qemu/ctype.h" 34 #include "qemu/cutils.h" 35 #include "qemu/error-report.h" 36 37 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 38 { 39 int len = qemu_strnlen(str, buf_size); 40 memcpy(buf, str, len); 41 memset(buf + len, pad, buf_size - len); 42 } 43 44 void pstrcpy(char *buf, int buf_size, const char *str) 45 { 46 int c; 47 char *q = buf; 48 49 if (buf_size <= 0) 50 return; 51 52 for(;;) { 53 c = *str++; 54 if (c == 0 || q >= buf + buf_size - 1) 55 break; 56 *q++ = c; 57 } 58 *q = '\0'; 59 } 60 61 /* strcat and truncate. */ 62 char *pstrcat(char *buf, int buf_size, const char *s) 63 { 64 int len; 65 len = strlen(buf); 66 if (len < buf_size) 67 pstrcpy(buf + len, buf_size - len, s); 68 return buf; 69 } 70 71 int strstart(const char *str, const char *val, const char **ptr) 72 { 73 const char *p, *q; 74 p = str; 75 q = val; 76 while (*q != '\0') { 77 if (*p != *q) 78 return 0; 79 p++; 80 q++; 81 } 82 if (ptr) 83 *ptr = p; 84 return 1; 85 } 86 87 int stristart(const char *str, const char *val, const char **ptr) 88 { 89 const char *p, *q; 90 p = str; 91 q = val; 92 while (*q != '\0') { 93 if (qemu_toupper(*p) != qemu_toupper(*q)) 94 return 0; 95 p++; 96 q++; 97 } 98 if (ptr) 99 *ptr = p; 100 return 1; 101 } 102 103 /* XXX: use host strnlen if available ? */ 104 int qemu_strnlen(const char *s, int max_len) 105 { 106 int i; 107 108 for(i = 0; i < max_len; i++) { 109 if (s[i] == '\0') { 110 break; 111 } 112 } 113 return i; 114 } 115 116 char *qemu_strsep(char **input, const char *delim) 117 { 118 char *result = *input; 119 if (result != NULL) { 120 char *p; 121 122 for (p = result; *p != '\0'; p++) { 123 if (strchr(delim, *p)) { 124 break; 125 } 126 } 127 if (*p == '\0') { 128 *input = NULL; 129 } else { 130 *p = '\0'; 131 *input = p + 1; 132 } 133 } 134 return result; 135 } 136 137 time_t mktimegm(struct tm *tm) 138 { 139 time_t t; 140 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 141 if (m < 3) { 142 m += 12; 143 y--; 144 } 145 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 146 y / 400 - 719469); 147 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 148 return t; 149 } 150 151 /* 152 * Make sure data goes on disk, but if possible do not bother to 153 * write out the inode just for timestamp updates. 154 * 155 * Unfortunately even in 2009 many operating systems do not support 156 * fdatasync and have to fall back to fsync. 157 */ 158 int qemu_fdatasync(int fd) 159 { 160 #ifdef CONFIG_FDATASYNC 161 return fdatasync(fd); 162 #else 163 return fsync(fd); 164 #endif 165 } 166 167 #ifndef _WIN32 168 /* Sets a specific flag */ 169 int fcntl_setfl(int fd, int flag) 170 { 171 int flags; 172 173 flags = fcntl(fd, F_GETFL); 174 if (flags == -1) 175 return -errno; 176 177 if (fcntl(fd, F_SETFL, flags | flag) == -1) 178 return -errno; 179 180 return 0; 181 } 182 #endif 183 184 static int64_t suffix_mul(char suffix, int64_t unit) 185 { 186 switch (qemu_toupper(suffix)) { 187 case 'B': 188 return 1; 189 case 'K': 190 return unit; 191 case 'M': 192 return unit * unit; 193 case 'G': 194 return unit * unit * unit; 195 case 'T': 196 return unit * unit * unit * unit; 197 case 'P': 198 return unit * unit * unit * unit * unit; 199 case 'E': 200 return unit * unit * unit * unit * unit * unit; 201 } 202 return -1; 203 } 204 205 /* 206 * Convert string to bytes, allowing either B/b for bytes, K/k for KB, 207 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned 208 * in *end, if not NULL. Return -ERANGE on overflow, and -EINVAL on 209 * other error. 210 */ 211 static int do_strtosz(const char *nptr, const char **end, 212 const char default_suffix, int64_t unit, 213 uint64_t *result) 214 { 215 int retval; 216 const char *endptr; 217 unsigned char c; 218 int mul_required = 0; 219 double val, mul, integral, fraction; 220 221 retval = qemu_strtod_finite(nptr, &endptr, &val); 222 if (retval) { 223 goto out; 224 } 225 fraction = modf(val, &integral); 226 if (fraction != 0) { 227 mul_required = 1; 228 } 229 c = *endptr; 230 mul = suffix_mul(c, unit); 231 if (mul >= 0) { 232 endptr++; 233 } else { 234 mul = suffix_mul(default_suffix, unit); 235 assert(mul >= 0); 236 } 237 if (mul == 1 && mul_required) { 238 retval = -EINVAL; 239 goto out; 240 } 241 /* 242 * Values >= 0xfffffffffffffc00 overflow uint64_t after their trip 243 * through double (53 bits of precision). 244 */ 245 if ((val * mul >= 0xfffffffffffffc00) || val < 0) { 246 retval = -ERANGE; 247 goto out; 248 } 249 *result = val * mul; 250 retval = 0; 251 252 out: 253 if (end) { 254 *end = endptr; 255 } else if (*endptr) { 256 retval = -EINVAL; 257 } 258 259 return retval; 260 } 261 262 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 263 { 264 return do_strtosz(nptr, end, 'B', 1024, result); 265 } 266 267 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 268 { 269 return do_strtosz(nptr, end, 'M', 1024, result); 270 } 271 272 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 273 { 274 return do_strtosz(nptr, end, 'B', 1000, result); 275 } 276 277 /** 278 * Helper function for error checking after strtol() and the like 279 */ 280 static int check_strtox_error(const char *nptr, char *ep, 281 const char **endptr, int libc_errno) 282 { 283 assert(ep >= nptr); 284 if (endptr) { 285 *endptr = ep; 286 } 287 288 /* Turn "no conversion" into an error */ 289 if (libc_errno == 0 && ep == nptr) { 290 return -EINVAL; 291 } 292 293 /* Fail when we're expected to consume the string, but didn't */ 294 if (!endptr && *ep) { 295 return -EINVAL; 296 } 297 298 return -libc_errno; 299 } 300 301 /** 302 * Convert string @nptr to an integer, and store it in @result. 303 * 304 * This is a wrapper around strtol() that is harder to misuse. 305 * Semantics of @nptr, @endptr, @base match strtol() with differences 306 * noted below. 307 * 308 * @nptr may be null, and no conversion is performed then. 309 * 310 * If no conversion is performed, store @nptr in *@endptr and return 311 * -EINVAL. 312 * 313 * If @endptr is null, and the string isn't fully converted, return 314 * -EINVAL. This is the case when the pointer that would be stored in 315 * a non-null @endptr points to a character other than '\0'. 316 * 317 * If the conversion overflows @result, store INT_MAX in @result, 318 * and return -ERANGE. 319 * 320 * If the conversion underflows @result, store INT_MIN in @result, 321 * and return -ERANGE. 322 * 323 * Else store the converted value in @result, and return zero. 324 */ 325 int qemu_strtoi(const char *nptr, const char **endptr, int base, 326 int *result) 327 { 328 char *ep; 329 long long lresult; 330 331 assert((unsigned) base <= 36 && base != 1); 332 if (!nptr) { 333 if (endptr) { 334 *endptr = nptr; 335 } 336 return -EINVAL; 337 } 338 339 errno = 0; 340 lresult = strtoll(nptr, &ep, base); 341 if (lresult < INT_MIN) { 342 *result = INT_MIN; 343 errno = ERANGE; 344 } else if (lresult > INT_MAX) { 345 *result = INT_MAX; 346 errno = ERANGE; 347 } else { 348 *result = lresult; 349 } 350 return check_strtox_error(nptr, ep, endptr, errno); 351 } 352 353 /** 354 * Convert string @nptr to an unsigned integer, and store it in @result. 355 * 356 * This is a wrapper around strtoul() that is harder to misuse. 357 * Semantics of @nptr, @endptr, @base match strtoul() with differences 358 * noted below. 359 * 360 * @nptr may be null, and no conversion is performed then. 361 * 362 * If no conversion is performed, store @nptr in *@endptr and return 363 * -EINVAL. 364 * 365 * If @endptr is null, and the string isn't fully converted, return 366 * -EINVAL. This is the case when the pointer that would be stored in 367 * a non-null @endptr points to a character other than '\0'. 368 * 369 * If the conversion overflows @result, store UINT_MAX in @result, 370 * and return -ERANGE. 371 * 372 * Else store the converted value in @result, and return zero. 373 * 374 * Note that a number with a leading minus sign gets converted without 375 * the minus sign, checked for overflow (see above), then negated (in 376 * @result's type). This is exactly how strtoul() works. 377 */ 378 int qemu_strtoui(const char *nptr, const char **endptr, int base, 379 unsigned int *result) 380 { 381 char *ep; 382 long long lresult; 383 384 assert((unsigned) base <= 36 && base != 1); 385 if (!nptr) { 386 if (endptr) { 387 *endptr = nptr; 388 } 389 return -EINVAL; 390 } 391 392 errno = 0; 393 lresult = strtoull(nptr, &ep, base); 394 395 /* Windows returns 1 for negative out-of-range values. */ 396 if (errno == ERANGE) { 397 *result = -1; 398 } else { 399 if (lresult > UINT_MAX) { 400 *result = UINT_MAX; 401 errno = ERANGE; 402 } else if (lresult < INT_MIN) { 403 *result = UINT_MAX; 404 errno = ERANGE; 405 } else { 406 *result = lresult; 407 } 408 } 409 return check_strtox_error(nptr, ep, endptr, errno); 410 } 411 412 /** 413 * Convert string @nptr to a long integer, and store it in @result. 414 * 415 * This is a wrapper around strtol() that is harder to misuse. 416 * Semantics of @nptr, @endptr, @base match strtol() with differences 417 * noted below. 418 * 419 * @nptr may be null, and no conversion is performed then. 420 * 421 * If no conversion is performed, store @nptr in *@endptr and return 422 * -EINVAL. 423 * 424 * If @endptr is null, and the string isn't fully converted, return 425 * -EINVAL. This is the case when the pointer that would be stored in 426 * a non-null @endptr points to a character other than '\0'. 427 * 428 * If the conversion overflows @result, store LONG_MAX in @result, 429 * and return -ERANGE. 430 * 431 * If the conversion underflows @result, store LONG_MIN in @result, 432 * and return -ERANGE. 433 * 434 * Else store the converted value in @result, and return zero. 435 */ 436 int qemu_strtol(const char *nptr, const char **endptr, int base, 437 long *result) 438 { 439 char *ep; 440 441 assert((unsigned) base <= 36 && base != 1); 442 if (!nptr) { 443 if (endptr) { 444 *endptr = nptr; 445 } 446 return -EINVAL; 447 } 448 449 errno = 0; 450 *result = strtol(nptr, &ep, base); 451 return check_strtox_error(nptr, ep, endptr, errno); 452 } 453 454 /** 455 * Convert string @nptr to an unsigned long, and store it in @result. 456 * 457 * This is a wrapper around strtoul() that is harder to misuse. 458 * Semantics of @nptr, @endptr, @base match strtoul() with differences 459 * noted below. 460 * 461 * @nptr may be null, and no conversion is performed then. 462 * 463 * If no conversion is performed, store @nptr in *@endptr and return 464 * -EINVAL. 465 * 466 * If @endptr is null, and the string isn't fully converted, return 467 * -EINVAL. This is the case when the pointer that would be stored in 468 * a non-null @endptr points to a character other than '\0'. 469 * 470 * If the conversion overflows @result, store ULONG_MAX in @result, 471 * and return -ERANGE. 472 * 473 * Else store the converted value in @result, and return zero. 474 * 475 * Note that a number with a leading minus sign gets converted without 476 * the minus sign, checked for overflow (see above), then negated (in 477 * @result's type). This is exactly how strtoul() works. 478 */ 479 int qemu_strtoul(const char *nptr, const char **endptr, int base, 480 unsigned long *result) 481 { 482 char *ep; 483 484 assert((unsigned) base <= 36 && base != 1); 485 if (!nptr) { 486 if (endptr) { 487 *endptr = nptr; 488 } 489 return -EINVAL; 490 } 491 492 errno = 0; 493 *result = strtoul(nptr, &ep, base); 494 /* Windows returns 1 for negative out-of-range values. */ 495 if (errno == ERANGE) { 496 *result = -1; 497 } 498 return check_strtox_error(nptr, ep, endptr, errno); 499 } 500 501 /** 502 * Convert string @nptr to an int64_t. 503 * 504 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 505 * and INT_MIN on underflow. 506 */ 507 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 508 int64_t *result) 509 { 510 char *ep; 511 512 assert((unsigned) base <= 36 && base != 1); 513 if (!nptr) { 514 if (endptr) { 515 *endptr = nptr; 516 } 517 return -EINVAL; 518 } 519 520 errno = 0; 521 /* FIXME This assumes int64_t is long long */ 522 *result = strtoll(nptr, &ep, base); 523 return check_strtox_error(nptr, ep, endptr, errno); 524 } 525 526 /** 527 * Convert string @nptr to an uint64_t. 528 * 529 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 530 */ 531 int qemu_strtou64(const char *nptr, const char **endptr, int base, 532 uint64_t *result) 533 { 534 char *ep; 535 536 assert((unsigned) base <= 36 && base != 1); 537 if (!nptr) { 538 if (endptr) { 539 *endptr = nptr; 540 } 541 return -EINVAL; 542 } 543 544 errno = 0; 545 /* FIXME This assumes uint64_t is unsigned long long */ 546 *result = strtoull(nptr, &ep, base); 547 /* Windows returns 1 for negative out-of-range values. */ 548 if (errno == ERANGE) { 549 *result = -1; 550 } 551 return check_strtox_error(nptr, ep, endptr, errno); 552 } 553 554 /** 555 * Convert string @nptr to a double. 556 * 557 * This is a wrapper around strtod() that is harder to misuse. 558 * Semantics of @nptr and @endptr match strtod() with differences 559 * noted below. 560 * 561 * @nptr may be null, and no conversion is performed then. 562 * 563 * If no conversion is performed, store @nptr in *@endptr and return 564 * -EINVAL. 565 * 566 * If @endptr is null, and the string isn't fully converted, return 567 * -EINVAL. This is the case when the pointer that would be stored in 568 * a non-null @endptr points to a character other than '\0'. 569 * 570 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 571 * on the sign, and return -ERANGE. 572 * 573 * If the conversion underflows, store +/-0.0 in @result, depending on the 574 * sign, and return -ERANGE. 575 * 576 * Else store the converted value in @result, and return zero. 577 */ 578 int qemu_strtod(const char *nptr, const char **endptr, double *result) 579 { 580 char *ep; 581 582 if (!nptr) { 583 if (endptr) { 584 *endptr = nptr; 585 } 586 return -EINVAL; 587 } 588 589 errno = 0; 590 *result = strtod(nptr, &ep); 591 return check_strtox_error(nptr, ep, endptr, errno); 592 } 593 594 /** 595 * Convert string @nptr to a finite double. 596 * 597 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 598 * with -EINVAL and no conversion is performed. 599 */ 600 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 601 { 602 double tmp; 603 int ret; 604 605 ret = qemu_strtod(nptr, endptr, &tmp); 606 if (!ret && !isfinite(tmp)) { 607 if (endptr) { 608 *endptr = nptr; 609 } 610 ret = -EINVAL; 611 } 612 613 if (ret != -EINVAL) { 614 *result = tmp; 615 } 616 return ret; 617 } 618 619 /** 620 * Searches for the first occurrence of 'c' in 's', and returns a pointer 621 * to the trailing null byte if none was found. 622 */ 623 #ifndef HAVE_STRCHRNUL 624 const char *qemu_strchrnul(const char *s, int c) 625 { 626 const char *e = strchr(s, c); 627 if (!e) { 628 e = s + strlen(s); 629 } 630 return e; 631 } 632 #endif 633 634 /** 635 * parse_uint: 636 * 637 * @s: String to parse 638 * @value: Destination for parsed integer value 639 * @endptr: Destination for pointer to first character not consumed 640 * @base: integer base, between 2 and 36 inclusive, or 0 641 * 642 * Parse unsigned integer 643 * 644 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 645 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 646 * 647 * If @s is null, or @base is invalid, or @s doesn't start with an 648 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 649 * return -EINVAL. 650 * 651 * Set *@endptr to point right beyond the parsed integer (even if the integer 652 * overflows or is negative, all digits will be parsed and *@endptr will 653 * point right beyond them). 654 * 655 * If the integer is negative, set *@value to 0, and return -ERANGE. 656 * 657 * If the integer overflows unsigned long long, set *@value to 658 * ULLONG_MAX, and return -ERANGE. 659 * 660 * Else, set *@value to the parsed integer, and return 0. 661 */ 662 int parse_uint(const char *s, unsigned long long *value, char **endptr, 663 int base) 664 { 665 int r = 0; 666 char *endp = (char *)s; 667 unsigned long long val = 0; 668 669 assert((unsigned) base <= 36 && base != 1); 670 if (!s) { 671 r = -EINVAL; 672 goto out; 673 } 674 675 errno = 0; 676 val = strtoull(s, &endp, base); 677 if (errno) { 678 r = -errno; 679 goto out; 680 } 681 682 if (endp == s) { 683 r = -EINVAL; 684 goto out; 685 } 686 687 /* make sure we reject negative numbers: */ 688 while (qemu_isspace(*s)) { 689 s++; 690 } 691 if (*s == '-') { 692 val = 0; 693 r = -ERANGE; 694 goto out; 695 } 696 697 out: 698 *value = val; 699 *endptr = endp; 700 return r; 701 } 702 703 /** 704 * parse_uint_full: 705 * 706 * @s: String to parse 707 * @value: Destination for parsed integer value 708 * @base: integer base, between 2 and 36 inclusive, or 0 709 * 710 * Parse unsigned integer from entire string 711 * 712 * Have the same behavior of parse_uint(), but with an additional check 713 * for additional data after the parsed number. If extra characters are present 714 * after the parsed number, the function will return -EINVAL, and *@v will 715 * be set to 0. 716 */ 717 int parse_uint_full(const char *s, unsigned long long *value, int base) 718 { 719 char *endp; 720 int r; 721 722 r = parse_uint(s, value, &endp, base); 723 if (r < 0) { 724 return r; 725 } 726 if (*endp) { 727 *value = 0; 728 return -EINVAL; 729 } 730 731 return 0; 732 } 733 734 int qemu_parse_fd(const char *param) 735 { 736 long fd; 737 char *endptr; 738 739 errno = 0; 740 fd = strtol(param, &endptr, 10); 741 if (param == endptr /* no conversion performed */ || 742 errno != 0 /* not representable as long; possibly others */ || 743 *endptr != '\0' /* final string not empty */ || 744 fd < 0 /* invalid as file descriptor */ || 745 fd > INT_MAX /* not representable as int */) { 746 return -1; 747 } 748 return fd; 749 } 750 751 /* 752 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 753 * Input is limited to 14-bit numbers 754 */ 755 int uleb128_encode_small(uint8_t *out, uint32_t n) 756 { 757 g_assert(n <= 0x3fff); 758 if (n < 0x80) { 759 *out++ = n; 760 return 1; 761 } else { 762 *out++ = (n & 0x7f) | 0x80; 763 *out++ = n >> 7; 764 return 2; 765 } 766 } 767 768 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 769 { 770 if (!(*in & 0x80)) { 771 *n = *in++; 772 return 1; 773 } else { 774 *n = *in++ & 0x7f; 775 /* we exceed 14 bit number */ 776 if (*in & 0x80) { 777 return -1; 778 } 779 *n |= *in++ << 7; 780 return 2; 781 } 782 } 783 784 /* 785 * helper to parse debug environment variables 786 */ 787 int parse_debug_env(const char *name, int max, int initial) 788 { 789 char *debug_env = getenv(name); 790 char *inv = NULL; 791 long debug; 792 793 if (!debug_env) { 794 return initial; 795 } 796 errno = 0; 797 debug = strtol(debug_env, &inv, 10); 798 if (inv == debug_env) { 799 return initial; 800 } 801 if (debug < 0 || debug > max || errno != 0) { 802 warn_report("%s not in [0, %d]", name, max); 803 return initial; 804 } 805 return debug; 806 } 807 808 /* 809 * Helper to print ethernet mac address 810 */ 811 const char *qemu_ether_ntoa(const MACAddr *mac) 812 { 813 static char ret[18]; 814 815 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x", 816 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]); 817 818 return ret; 819 } 820 821 /* 822 * Return human readable string for size @val. 823 * @val can be anything that uint64_t allows (no more than "16 EiB"). 824 * Use IEC binary units like KiB, MiB, and so forth. 825 * Caller is responsible for passing it to g_free(). 826 */ 827 char *size_to_str(uint64_t val) 828 { 829 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 830 uint64_t div; 831 int i; 832 833 /* 834 * The exponent (returned in i) minus one gives us 835 * floor(log2(val * 1024 / 1000). The correction makes us 836 * switch to the higher power when the integer part is >= 1000. 837 * (see e41b509d68afb1f for more info) 838 */ 839 frexp(val / (1000.0 / 1024.0), &i); 840 i = (i - 1) / 10; 841 div = 1ULL << (i * 10); 842 843 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); 844 } 845 846 int qemu_pstrcmp0(const char **str1, const char **str2) 847 { 848 return g_strcmp0(*str1, *str2); 849 } 850