1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #include "qemu/ctype.h" 30 #include "qemu/cutils.h" 31 #include "qemu/error-report.h" 32 33 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 34 { 35 int len = qemu_strnlen(str, buf_size); 36 memcpy(buf, str, len); 37 memset(buf + len, pad, buf_size - len); 38 } 39 40 void pstrcpy(char *buf, int buf_size, const char *str) 41 { 42 int c; 43 char *q = buf; 44 45 if (buf_size <= 0) 46 return; 47 48 for(;;) { 49 c = *str++; 50 if (c == 0 || q >= buf + buf_size - 1) 51 break; 52 *q++ = c; 53 } 54 *q = '\0'; 55 } 56 57 /* strcat and truncate. */ 58 char *pstrcat(char *buf, int buf_size, const char *s) 59 { 60 int len; 61 len = strlen(buf); 62 if (len < buf_size) 63 pstrcpy(buf + len, buf_size - len, s); 64 return buf; 65 } 66 67 int strstart(const char *str, const char *val, const char **ptr) 68 { 69 const char *p, *q; 70 p = str; 71 q = val; 72 while (*q != '\0') { 73 if (*p != *q) 74 return 0; 75 p++; 76 q++; 77 } 78 if (ptr) 79 *ptr = p; 80 return 1; 81 } 82 83 int stristart(const char *str, const char *val, const char **ptr) 84 { 85 const char *p, *q; 86 p = str; 87 q = val; 88 while (*q != '\0') { 89 if (qemu_toupper(*p) != qemu_toupper(*q)) 90 return 0; 91 p++; 92 q++; 93 } 94 if (ptr) 95 *ptr = p; 96 return 1; 97 } 98 99 /* XXX: use host strnlen if available ? */ 100 int qemu_strnlen(const char *s, int max_len) 101 { 102 int i; 103 104 for(i = 0; i < max_len; i++) { 105 if (s[i] == '\0') { 106 break; 107 } 108 } 109 return i; 110 } 111 112 char *qemu_strsep(char **input, const char *delim) 113 { 114 char *result = *input; 115 if (result != NULL) { 116 char *p; 117 118 for (p = result; *p != '\0'; p++) { 119 if (strchr(delim, *p)) { 120 break; 121 } 122 } 123 if (*p == '\0') { 124 *input = NULL; 125 } else { 126 *p = '\0'; 127 *input = p + 1; 128 } 129 } 130 return result; 131 } 132 133 time_t mktimegm(struct tm *tm) 134 { 135 time_t t; 136 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 137 if (m < 3) { 138 m += 12; 139 y--; 140 } 141 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 142 y / 400 - 719469); 143 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 144 return t; 145 } 146 147 /* 148 * Make sure data goes on disk, but if possible do not bother to 149 * write out the inode just for timestamp updates. 150 * 151 * Unfortunately even in 2009 many operating systems do not support 152 * fdatasync and have to fall back to fsync. 153 */ 154 int qemu_fdatasync(int fd) 155 { 156 #ifdef CONFIG_FDATASYNC 157 return fdatasync(fd); 158 #else 159 return fsync(fd); 160 #endif 161 } 162 163 /** 164 * Sync changes made to the memory mapped file back to the backing 165 * storage. For POSIX compliant systems this will fallback 166 * to regular msync call. Otherwise it will trigger whole file sync 167 * (including the metadata case there is no support to skip that otherwise) 168 * 169 * @addr - start of the memory area to be synced 170 * @length - length of the are to be synced 171 * @fd - file descriptor for the file to be synced 172 * (mandatory only for POSIX non-compliant systems) 173 */ 174 int qemu_msync(void *addr, size_t length, int fd) 175 { 176 #ifdef CONFIG_POSIX 177 size_t align_mask = ~(qemu_real_host_page_size() - 1); 178 179 /** 180 * There are no strict reqs as per the length of mapping 181 * to be synced. Still the length needs to follow the address 182 * alignment changes. Additionally - round the size to the multiple 183 * of PAGE_SIZE 184 */ 185 length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1)); 186 length = (length + ~align_mask) & align_mask; 187 188 addr = (void *)((uintptr_t)addr & align_mask); 189 190 return msync(addr, length, MS_SYNC); 191 #else /* CONFIG_POSIX */ 192 /** 193 * Perform the sync based on the file descriptor 194 * The sync range will most probably be wider than the one 195 * requested - but it will still get the job done 196 */ 197 return qemu_fdatasync(fd); 198 #endif /* CONFIG_POSIX */ 199 } 200 201 static int64_t suffix_mul(char suffix, int64_t unit) 202 { 203 switch (qemu_toupper(suffix)) { 204 case 'B': 205 return 1; 206 case 'K': 207 return unit; 208 case 'M': 209 return unit * unit; 210 case 'G': 211 return unit * unit * unit; 212 case 'T': 213 return unit * unit * unit * unit; 214 case 'P': 215 return unit * unit * unit * unit * unit; 216 case 'E': 217 return unit * unit * unit * unit * unit * unit; 218 } 219 return -1; 220 } 221 222 /* 223 * Convert size string to bytes. 224 * 225 * The size parsing supports the following syntaxes 226 * - 12345 - decimal, scale determined by @default_suffix and @unit 227 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 228 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 229 * fractional portion is truncated to byte 230 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 231 * 232 * The following cause a deprecation warning, and may be removed in the future 233 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix 234 * 235 * The following are intentionally not supported 236 * - octal, such as 08 237 * - fractional hex, such as 0x1.8 238 * - floating point exponents, such as 1e3 239 * 240 * The end pointer will be returned in *end, if not NULL. If there is 241 * no fraction, the input can be decimal or hexadecimal; if there is a 242 * fraction, then the input must be decimal and there must be a suffix 243 * (possibly by @default_suffix) larger than Byte, and the fractional 244 * portion may suffer from precision loss or rounding. The input must 245 * be positive. 246 * 247 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 248 * other error (with *@end left unchanged). 249 */ 250 static int do_strtosz(const char *nptr, const char **end, 251 const char default_suffix, int64_t unit, 252 uint64_t *result) 253 { 254 int retval; 255 const char *endptr, *f; 256 unsigned char c; 257 bool hex = false; 258 uint64_t val, valf = 0; 259 int64_t mul; 260 261 /* Parse integral portion as decimal. */ 262 retval = qemu_strtou64(nptr, &endptr, 10, &val); 263 if (retval) { 264 goto out; 265 } 266 if (memchr(nptr, '-', endptr - nptr) != NULL) { 267 endptr = nptr; 268 retval = -EINVAL; 269 goto out; 270 } 271 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { 272 /* Input looks like hex, reparse, and insist on no fraction. */ 273 retval = qemu_strtou64(nptr, &endptr, 16, &val); 274 if (retval) { 275 goto out; 276 } 277 if (*endptr == '.') { 278 endptr = nptr; 279 retval = -EINVAL; 280 goto out; 281 } 282 hex = true; 283 } else if (*endptr == '.') { 284 /* 285 * Input looks like a fraction. Make sure even 1.k works 286 * without fractional digits. If we see an exponent, treat 287 * the entire input as invalid instead. 288 */ 289 double fraction; 290 291 f = endptr; 292 retval = qemu_strtod_finite(f, &endptr, &fraction); 293 if (retval) { 294 endptr++; 295 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { 296 endptr = nptr; 297 retval = -EINVAL; 298 goto out; 299 } else { 300 /* Extract into a 64-bit fixed-point fraction. */ 301 valf = (uint64_t)(fraction * 0x1p64); 302 } 303 } 304 c = *endptr; 305 mul = suffix_mul(c, unit); 306 if (mul > 0) { 307 if (hex) { 308 warn_report("Using a multiplier suffix on hex numbers " 309 "is deprecated: %s", nptr); 310 } 311 endptr++; 312 } else { 313 mul = suffix_mul(default_suffix, unit); 314 assert(mul > 0); 315 } 316 if (mul == 1) { 317 /* When a fraction is present, a scale is required. */ 318 if (valf != 0) { 319 endptr = nptr; 320 retval = -EINVAL; 321 goto out; 322 } 323 } else { 324 uint64_t valh, tmp; 325 326 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 327 mulu64(&val, &valh, val, mul); 328 mulu64(&valf, &tmp, valf, mul); 329 val += tmp; 330 valh += val < tmp; 331 332 /* Round 0.5 upward. */ 333 tmp = valf >> 63; 334 val += tmp; 335 valh += val < tmp; 336 337 /* Report overflow. */ 338 if (valh != 0) { 339 retval = -ERANGE; 340 goto out; 341 } 342 } 343 344 retval = 0; 345 346 out: 347 if (end) { 348 *end = endptr; 349 } else if (*endptr) { 350 retval = -EINVAL; 351 } 352 if (retval == 0) { 353 *result = val; 354 } 355 356 return retval; 357 } 358 359 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 360 { 361 return do_strtosz(nptr, end, 'B', 1024, result); 362 } 363 364 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 365 { 366 return do_strtosz(nptr, end, 'M', 1024, result); 367 } 368 369 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 370 { 371 return do_strtosz(nptr, end, 'B', 1000, result); 372 } 373 374 /** 375 * Helper function for error checking after strtol() and the like 376 */ 377 static int check_strtox_error(const char *nptr, char *ep, 378 const char **endptr, bool check_zero, 379 int libc_errno) 380 { 381 assert(ep >= nptr); 382 383 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ 384 if (check_zero && ep == nptr && libc_errno == 0) { 385 char *tmp; 386 387 errno = 0; 388 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && 389 (*tmp == 'x' || *tmp == 'X')) { 390 ep = tmp; 391 } 392 } 393 394 if (endptr) { 395 *endptr = ep; 396 } 397 398 /* Turn "no conversion" into an error */ 399 if (libc_errno == 0 && ep == nptr) { 400 return -EINVAL; 401 } 402 403 /* Fail when we're expected to consume the string, but didn't */ 404 if (!endptr && *ep) { 405 return -EINVAL; 406 } 407 408 return -libc_errno; 409 } 410 411 /** 412 * Convert string @nptr to an integer, and store it in @result. 413 * 414 * This is a wrapper around strtol() that is harder to misuse. 415 * Semantics of @nptr, @endptr, @base match strtol() with differences 416 * noted below. 417 * 418 * @nptr may be null, and no conversion is performed then. 419 * 420 * If no conversion is performed, store @nptr in *@endptr and return 421 * -EINVAL. 422 * 423 * If @endptr is null, and the string isn't fully converted, return 424 * -EINVAL. This is the case when the pointer that would be stored in 425 * a non-null @endptr points to a character other than '\0'. 426 * 427 * If the conversion overflows @result, store INT_MAX in @result, 428 * and return -ERANGE. 429 * 430 * If the conversion underflows @result, store INT_MIN in @result, 431 * and return -ERANGE. 432 * 433 * Else store the converted value in @result, and return zero. 434 */ 435 int qemu_strtoi(const char *nptr, const char **endptr, int base, 436 int *result) 437 { 438 char *ep; 439 long long lresult; 440 441 assert((unsigned) base <= 36 && base != 1); 442 if (!nptr) { 443 if (endptr) { 444 *endptr = nptr; 445 } 446 return -EINVAL; 447 } 448 449 errno = 0; 450 lresult = strtoll(nptr, &ep, base); 451 if (lresult < INT_MIN) { 452 *result = INT_MIN; 453 errno = ERANGE; 454 } else if (lresult > INT_MAX) { 455 *result = INT_MAX; 456 errno = ERANGE; 457 } else { 458 *result = lresult; 459 } 460 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 461 } 462 463 /** 464 * Convert string @nptr to an unsigned integer, and store it in @result. 465 * 466 * This is a wrapper around strtoul() that is harder to misuse. 467 * Semantics of @nptr, @endptr, @base match strtoul() with differences 468 * noted below. 469 * 470 * @nptr may be null, and no conversion is performed then. 471 * 472 * If no conversion is performed, store @nptr in *@endptr and return 473 * -EINVAL. 474 * 475 * If @endptr is null, and the string isn't fully converted, return 476 * -EINVAL. This is the case when the pointer that would be stored in 477 * a non-null @endptr points to a character other than '\0'. 478 * 479 * If the conversion overflows @result, store UINT_MAX in @result, 480 * and return -ERANGE. 481 * 482 * Else store the converted value in @result, and return zero. 483 * 484 * Note that a number with a leading minus sign gets converted without 485 * the minus sign, checked for overflow (see above), then negated (in 486 * @result's type). This is exactly how strtoul() works. 487 */ 488 int qemu_strtoui(const char *nptr, const char **endptr, int base, 489 unsigned int *result) 490 { 491 char *ep; 492 long long lresult; 493 494 assert((unsigned) base <= 36 && base != 1); 495 if (!nptr) { 496 if (endptr) { 497 *endptr = nptr; 498 } 499 return -EINVAL; 500 } 501 502 errno = 0; 503 lresult = strtoull(nptr, &ep, base); 504 505 /* Windows returns 1 for negative out-of-range values. */ 506 if (errno == ERANGE) { 507 *result = -1; 508 } else { 509 if (lresult > UINT_MAX) { 510 *result = UINT_MAX; 511 errno = ERANGE; 512 } else if (lresult < INT_MIN) { 513 *result = UINT_MAX; 514 errno = ERANGE; 515 } else { 516 *result = lresult; 517 } 518 } 519 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 520 } 521 522 /** 523 * Convert string @nptr to a long integer, and store it in @result. 524 * 525 * This is a wrapper around strtol() that is harder to misuse. 526 * Semantics of @nptr, @endptr, @base match strtol() with differences 527 * noted below. 528 * 529 * @nptr may be null, and no conversion is performed then. 530 * 531 * If no conversion is performed, store @nptr in *@endptr and return 532 * -EINVAL. 533 * 534 * If @endptr is null, and the string isn't fully converted, return 535 * -EINVAL. This is the case when the pointer that would be stored in 536 * a non-null @endptr points to a character other than '\0'. 537 * 538 * If the conversion overflows @result, store LONG_MAX in @result, 539 * and return -ERANGE. 540 * 541 * If the conversion underflows @result, store LONG_MIN in @result, 542 * and return -ERANGE. 543 * 544 * Else store the converted value in @result, and return zero. 545 */ 546 int qemu_strtol(const char *nptr, const char **endptr, int base, 547 long *result) 548 { 549 char *ep; 550 551 assert((unsigned) base <= 36 && base != 1); 552 if (!nptr) { 553 if (endptr) { 554 *endptr = nptr; 555 } 556 return -EINVAL; 557 } 558 559 errno = 0; 560 *result = strtol(nptr, &ep, base); 561 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 562 } 563 564 /** 565 * Convert string @nptr to an unsigned long, and store it in @result. 566 * 567 * This is a wrapper around strtoul() that is harder to misuse. 568 * Semantics of @nptr, @endptr, @base match strtoul() with differences 569 * noted below. 570 * 571 * @nptr may be null, and no conversion is performed then. 572 * 573 * If no conversion is performed, store @nptr in *@endptr and return 574 * -EINVAL. 575 * 576 * If @endptr is null, and the string isn't fully converted, return 577 * -EINVAL. This is the case when the pointer that would be stored in 578 * a non-null @endptr points to a character other than '\0'. 579 * 580 * If the conversion overflows @result, store ULONG_MAX in @result, 581 * and return -ERANGE. 582 * 583 * Else store the converted value in @result, and return zero. 584 * 585 * Note that a number with a leading minus sign gets converted without 586 * the minus sign, checked for overflow (see above), then negated (in 587 * @result's type). This is exactly how strtoul() works. 588 */ 589 int qemu_strtoul(const char *nptr, const char **endptr, int base, 590 unsigned long *result) 591 { 592 char *ep; 593 594 assert((unsigned) base <= 36 && base != 1); 595 if (!nptr) { 596 if (endptr) { 597 *endptr = nptr; 598 } 599 return -EINVAL; 600 } 601 602 errno = 0; 603 *result = strtoul(nptr, &ep, base); 604 /* Windows returns 1 for negative out-of-range values. */ 605 if (errno == ERANGE) { 606 *result = -1; 607 } 608 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 609 } 610 611 /** 612 * Convert string @nptr to an int64_t. 613 * 614 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 615 * and INT64_MIN on underflow. 616 */ 617 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 618 int64_t *result) 619 { 620 char *ep; 621 622 assert((unsigned) base <= 36 && base != 1); 623 if (!nptr) { 624 if (endptr) { 625 *endptr = nptr; 626 } 627 return -EINVAL; 628 } 629 630 /* This assumes int64_t is long long TODO relax */ 631 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 632 errno = 0; 633 *result = strtoll(nptr, &ep, base); 634 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 635 } 636 637 /** 638 * Convert string @nptr to an uint64_t. 639 * 640 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 641 */ 642 int qemu_strtou64(const char *nptr, const char **endptr, int base, 643 uint64_t *result) 644 { 645 char *ep; 646 647 assert((unsigned) base <= 36 && base != 1); 648 if (!nptr) { 649 if (endptr) { 650 *endptr = nptr; 651 } 652 return -EINVAL; 653 } 654 655 /* This assumes uint64_t is unsigned long long TODO relax */ 656 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 657 errno = 0; 658 *result = strtoull(nptr, &ep, base); 659 /* Windows returns 1 for negative out-of-range values. */ 660 if (errno == ERANGE) { 661 *result = -1; 662 } 663 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 664 } 665 666 /** 667 * Convert string @nptr to a double. 668 * 669 * This is a wrapper around strtod() that is harder to misuse. 670 * Semantics of @nptr and @endptr match strtod() with differences 671 * noted below. 672 * 673 * @nptr may be null, and no conversion is performed then. 674 * 675 * If no conversion is performed, store @nptr in *@endptr and return 676 * -EINVAL. 677 * 678 * If @endptr is null, and the string isn't fully converted, return 679 * -EINVAL. This is the case when the pointer that would be stored in 680 * a non-null @endptr points to a character other than '\0'. 681 * 682 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 683 * on the sign, and return -ERANGE. 684 * 685 * If the conversion underflows, store +/-0.0 in @result, depending on the 686 * sign, and return -ERANGE. 687 * 688 * Else store the converted value in @result, and return zero. 689 */ 690 int qemu_strtod(const char *nptr, const char **endptr, double *result) 691 { 692 char *ep; 693 694 if (!nptr) { 695 if (endptr) { 696 *endptr = nptr; 697 } 698 return -EINVAL; 699 } 700 701 errno = 0; 702 *result = strtod(nptr, &ep); 703 return check_strtox_error(nptr, ep, endptr, false, errno); 704 } 705 706 /** 707 * Convert string @nptr to a finite double. 708 * 709 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 710 * with -EINVAL and no conversion is performed. 711 */ 712 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 713 { 714 double tmp; 715 int ret; 716 717 ret = qemu_strtod(nptr, endptr, &tmp); 718 if (!ret && !isfinite(tmp)) { 719 if (endptr) { 720 *endptr = nptr; 721 } 722 ret = -EINVAL; 723 } 724 725 if (ret != -EINVAL) { 726 *result = tmp; 727 } 728 return ret; 729 } 730 731 /** 732 * Searches for the first occurrence of 'c' in 's', and returns a pointer 733 * to the trailing null byte if none was found. 734 */ 735 #ifndef HAVE_STRCHRNUL 736 const char *qemu_strchrnul(const char *s, int c) 737 { 738 const char *e = strchr(s, c); 739 if (!e) { 740 e = s + strlen(s); 741 } 742 return e; 743 } 744 #endif 745 746 /** 747 * parse_uint: 748 * 749 * @s: String to parse 750 * @value: Destination for parsed integer value 751 * @endptr: Destination for pointer to first character not consumed 752 * @base: integer base, between 2 and 36 inclusive, or 0 753 * 754 * Parse unsigned integer 755 * 756 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 757 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 758 * 759 * If @s is null, or @base is invalid, or @s doesn't start with an 760 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 761 * return -EINVAL. 762 * 763 * Set *@endptr to point right beyond the parsed integer (even if the integer 764 * overflows or is negative, all digits will be parsed and *@endptr will 765 * point right beyond them). 766 * 767 * If the integer is negative, set *@value to 0, and return -ERANGE. 768 * 769 * If the integer overflows unsigned long long, set *@value to 770 * ULLONG_MAX, and return -ERANGE. 771 * 772 * Else, set *@value to the parsed integer, and return 0. 773 */ 774 int parse_uint(const char *s, unsigned long long *value, char **endptr, 775 int base) 776 { 777 int r = 0; 778 char *endp = (char *)s; 779 unsigned long long val = 0; 780 781 assert((unsigned) base <= 36 && base != 1); 782 if (!s) { 783 r = -EINVAL; 784 goto out; 785 } 786 787 errno = 0; 788 val = strtoull(s, &endp, base); 789 if (errno) { 790 r = -errno; 791 goto out; 792 } 793 794 if (endp == s) { 795 r = -EINVAL; 796 goto out; 797 } 798 799 /* make sure we reject negative numbers: */ 800 while (qemu_isspace(*s)) { 801 s++; 802 } 803 if (*s == '-') { 804 val = 0; 805 r = -ERANGE; 806 goto out; 807 } 808 809 out: 810 *value = val; 811 *endptr = endp; 812 return r; 813 } 814 815 /** 816 * parse_uint_full: 817 * 818 * @s: String to parse 819 * @value: Destination for parsed integer value 820 * @base: integer base, between 2 and 36 inclusive, or 0 821 * 822 * Parse unsigned integer from entire string 823 * 824 * Have the same behavior of parse_uint(), but with an additional check 825 * for additional data after the parsed number. If extra characters are present 826 * after the parsed number, the function will return -EINVAL, and *@v will 827 * be set to 0. 828 */ 829 int parse_uint_full(const char *s, unsigned long long *value, int base) 830 { 831 char *endp; 832 int r; 833 834 r = parse_uint(s, value, &endp, base); 835 if (r < 0) { 836 return r; 837 } 838 if (*endp) { 839 *value = 0; 840 return -EINVAL; 841 } 842 843 return 0; 844 } 845 846 int qemu_parse_fd(const char *param) 847 { 848 long fd; 849 char *endptr; 850 851 errno = 0; 852 fd = strtol(param, &endptr, 10); 853 if (param == endptr /* no conversion performed */ || 854 errno != 0 /* not representable as long; possibly others */ || 855 *endptr != '\0' /* final string not empty */ || 856 fd < 0 /* invalid as file descriptor */ || 857 fd > INT_MAX /* not representable as int */) { 858 return -1; 859 } 860 return fd; 861 } 862 863 /* 864 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 865 * Input is limited to 14-bit numbers 866 */ 867 int uleb128_encode_small(uint8_t *out, uint32_t n) 868 { 869 g_assert(n <= 0x3fff); 870 if (n < 0x80) { 871 *out = n; 872 return 1; 873 } else { 874 *out++ = (n & 0x7f) | 0x80; 875 *out = n >> 7; 876 return 2; 877 } 878 } 879 880 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 881 { 882 if (!(*in & 0x80)) { 883 *n = *in; 884 return 1; 885 } else { 886 *n = *in++ & 0x7f; 887 /* we exceed 14 bit number */ 888 if (*in & 0x80) { 889 return -1; 890 } 891 *n |= *in << 7; 892 return 2; 893 } 894 } 895 896 /* 897 * helper to parse debug environment variables 898 */ 899 int parse_debug_env(const char *name, int max, int initial) 900 { 901 char *debug_env = getenv(name); 902 char *inv = NULL; 903 long debug; 904 905 if (!debug_env) { 906 return initial; 907 } 908 errno = 0; 909 debug = strtol(debug_env, &inv, 10); 910 if (inv == debug_env) { 911 return initial; 912 } 913 if (debug < 0 || debug > max || errno != 0) { 914 warn_report("%s not in [0, %d]", name, max); 915 return initial; 916 } 917 return debug; 918 } 919 920 /* 921 * Return human readable string for size @val. 922 * @val can be anything that uint64_t allows (no more than "16 EiB"). 923 * Use IEC binary units like KiB, MiB, and so forth. 924 * Caller is responsible for passing it to g_free(). 925 */ 926 char *size_to_str(uint64_t val) 927 { 928 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 929 uint64_t div; 930 int i; 931 932 /* 933 * The exponent (returned in i) minus one gives us 934 * floor(log2(val * 1024 / 1000). The correction makes us 935 * switch to the higher power when the integer part is >= 1000. 936 * (see e41b509d68afb1f for more info) 937 */ 938 frexp(val / (1000.0 / 1024.0), &i); 939 i = (i - 1) / 10; 940 div = 1ULL << (i * 10); 941 942 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); 943 } 944 945 char *freq_to_str(uint64_t freq_hz) 946 { 947 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" }; 948 double freq = freq_hz; 949 size_t idx = 0; 950 951 while (freq >= 1000.0) { 952 freq /= 1000.0; 953 idx++; 954 } 955 assert(idx < ARRAY_SIZE(suffixes)); 956 957 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]); 958 } 959 960 int qemu_pstrcmp0(const char **str1, const char **str2) 961 { 962 return g_strcmp0(*str1, *str2); 963 } 964 965 static inline bool starts_with_prefix(const char *dir) 966 { 967 size_t prefix_len = strlen(CONFIG_PREFIX); 968 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 969 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 970 } 971 972 /* Return the next path component in dir, and store its length in *p_len. */ 973 static inline const char *next_component(const char *dir, int *p_len) 974 { 975 int len; 976 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 977 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 978 dir++; 979 } 980 len = 0; 981 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 982 len++; 983 } 984 *p_len = len; 985 return dir; 986 } 987 988 char *get_relocated_path(const char *dir) 989 { 990 size_t prefix_len = strlen(CONFIG_PREFIX); 991 const char *bindir = CONFIG_BINDIR; 992 const char *exec_dir = qemu_get_exec_dir(); 993 GString *result; 994 int len_dir, len_bindir; 995 996 /* Fail if qemu_init_exec_dir was not called. */ 997 assert(exec_dir[0]); 998 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { 999 return g_strdup(dir); 1000 } 1001 1002 result = g_string_new(exec_dir); 1003 1004 /* Advance over common components. */ 1005 len_dir = len_bindir = prefix_len; 1006 do { 1007 dir += len_dir; 1008 bindir += len_bindir; 1009 dir = next_component(dir, &len_dir); 1010 bindir = next_component(bindir, &len_bindir); 1011 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 1012 1013 /* Ascend from bindir to the common prefix with dir. */ 1014 while (len_bindir) { 1015 bindir += len_bindir; 1016 g_string_append(result, "/.."); 1017 bindir = next_component(bindir, &len_bindir); 1018 } 1019 1020 if (*dir) { 1021 assert(G_IS_DIR_SEPARATOR(dir[-1])); 1022 g_string_append(result, dir - 1); 1023 } 1024 return g_string_free(result, false); 1025 } 1026