1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu-common.h" 25 #include "qemu/host-utils.h" 26 #include <math.h> 27 #include <limits.h> 28 #include <errno.h> 29 30 #include "qemu/sockets.h" 31 #include "qemu/iov.h" 32 #include "net/net.h" 33 34 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 35 { 36 int len = qemu_strnlen(str, buf_size); 37 memcpy(buf, str, len); 38 memset(buf + len, pad, buf_size - len); 39 } 40 41 void pstrcpy(char *buf, int buf_size, const char *str) 42 { 43 int c; 44 char *q = buf; 45 46 if (buf_size <= 0) 47 return; 48 49 for(;;) { 50 c = *str++; 51 if (c == 0 || q >= buf + buf_size - 1) 52 break; 53 *q++ = c; 54 } 55 *q = '\0'; 56 } 57 58 /* strcat and truncate. */ 59 char *pstrcat(char *buf, int buf_size, const char *s) 60 { 61 int len; 62 len = strlen(buf); 63 if (len < buf_size) 64 pstrcpy(buf + len, buf_size - len, s); 65 return buf; 66 } 67 68 int strstart(const char *str, const char *val, const char **ptr) 69 { 70 const char *p, *q; 71 p = str; 72 q = val; 73 while (*q != '\0') { 74 if (*p != *q) 75 return 0; 76 p++; 77 q++; 78 } 79 if (ptr) 80 *ptr = p; 81 return 1; 82 } 83 84 int stristart(const char *str, const char *val, const char **ptr) 85 { 86 const char *p, *q; 87 p = str; 88 q = val; 89 while (*q != '\0') { 90 if (qemu_toupper(*p) != qemu_toupper(*q)) 91 return 0; 92 p++; 93 q++; 94 } 95 if (ptr) 96 *ptr = p; 97 return 1; 98 } 99 100 /* XXX: use host strnlen if available ? */ 101 int qemu_strnlen(const char *s, int max_len) 102 { 103 int i; 104 105 for(i = 0; i < max_len; i++) { 106 if (s[i] == '\0') { 107 break; 108 } 109 } 110 return i; 111 } 112 113 char *qemu_strsep(char **input, const char *delim) 114 { 115 char *result = *input; 116 if (result != NULL) { 117 char *p; 118 119 for (p = result; *p != '\0'; p++) { 120 if (strchr(delim, *p)) { 121 break; 122 } 123 } 124 if (*p == '\0') { 125 *input = NULL; 126 } else { 127 *p = '\0'; 128 *input = p + 1; 129 } 130 } 131 return result; 132 } 133 134 time_t mktimegm(struct tm *tm) 135 { 136 time_t t; 137 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 138 if (m < 3) { 139 m += 12; 140 y--; 141 } 142 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 143 y / 400 - 719469); 144 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 145 return t; 146 } 147 148 int qemu_fls(int i) 149 { 150 return 32 - clz32(i); 151 } 152 153 /* 154 * Make sure data goes on disk, but if possible do not bother to 155 * write out the inode just for timestamp updates. 156 * 157 * Unfortunately even in 2009 many operating systems do not support 158 * fdatasync and have to fall back to fsync. 159 */ 160 int qemu_fdatasync(int fd) 161 { 162 #ifdef CONFIG_FDATASYNC 163 return fdatasync(fd); 164 #else 165 return fsync(fd); 166 #endif 167 } 168 169 /* 170 * Searches for an area with non-zero content in a buffer 171 * 172 * Attention! The len must be a multiple of 173 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE) 174 * and addr must be a multiple of sizeof(VECTYPE) due to 175 * restriction of optimizations in this function. 176 * 177 * can_use_buffer_find_nonzero_offset() can be used to check 178 * these requirements. 179 * 180 * The return value is the offset of the non-zero area rounded 181 * down to a multiple of sizeof(VECTYPE) for the first 182 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to 183 * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE) 184 * afterwards. 185 * 186 * If the buffer is all zero the return value is equal to len. 187 */ 188 189 size_t buffer_find_nonzero_offset(const void *buf, size_t len) 190 { 191 const VECTYPE *p = buf; 192 const VECTYPE zero = (VECTYPE){0}; 193 size_t i; 194 195 assert(can_use_buffer_find_nonzero_offset(buf, len)); 196 197 if (!len) { 198 return 0; 199 } 200 201 for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) { 202 if (!ALL_EQ(p[i], zero)) { 203 return i * sizeof(VECTYPE); 204 } 205 } 206 207 for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; 208 i < len / sizeof(VECTYPE); 209 i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) { 210 VECTYPE tmp0 = p[i + 0] | p[i + 1]; 211 VECTYPE tmp1 = p[i + 2] | p[i + 3]; 212 VECTYPE tmp2 = p[i + 4] | p[i + 5]; 213 VECTYPE tmp3 = p[i + 6] | p[i + 7]; 214 VECTYPE tmp01 = tmp0 | tmp1; 215 VECTYPE tmp23 = tmp2 | tmp3; 216 if (!ALL_EQ(tmp01 | tmp23, zero)) { 217 break; 218 } 219 } 220 221 return i * sizeof(VECTYPE); 222 } 223 224 /* 225 * Checks if a buffer is all zeroes 226 * 227 * Attention! The len must be a multiple of 4 * sizeof(long) due to 228 * restriction of optimizations in this function. 229 */ 230 bool buffer_is_zero(const void *buf, size_t len) 231 { 232 /* 233 * Use long as the biggest available internal data type that fits into the 234 * CPU register and unroll the loop to smooth out the effect of memory 235 * latency. 236 */ 237 238 size_t i; 239 long d0, d1, d2, d3; 240 const long * const data = buf; 241 242 /* use vector optimized zero check if possible */ 243 if (can_use_buffer_find_nonzero_offset(buf, len)) { 244 return buffer_find_nonzero_offset(buf, len) == len; 245 } 246 247 assert(len % (4 * sizeof(long)) == 0); 248 len /= sizeof(long); 249 250 for (i = 0; i < len; i += 4) { 251 d0 = data[i + 0]; 252 d1 = data[i + 1]; 253 d2 = data[i + 2]; 254 d3 = data[i + 3]; 255 256 if (d0 || d1 || d2 || d3) { 257 return false; 258 } 259 } 260 261 return true; 262 } 263 264 #ifndef _WIN32 265 /* Sets a specific flag */ 266 int fcntl_setfl(int fd, int flag) 267 { 268 int flags; 269 270 flags = fcntl(fd, F_GETFL); 271 if (flags == -1) 272 return -errno; 273 274 if (fcntl(fd, F_SETFL, flags | flag) == -1) 275 return -errno; 276 277 return 0; 278 } 279 #endif 280 281 static int64_t suffix_mul(char suffix, int64_t unit) 282 { 283 switch (qemu_toupper(suffix)) { 284 case STRTOSZ_DEFSUFFIX_B: 285 return 1; 286 case STRTOSZ_DEFSUFFIX_KB: 287 return unit; 288 case STRTOSZ_DEFSUFFIX_MB: 289 return unit * unit; 290 case STRTOSZ_DEFSUFFIX_GB: 291 return unit * unit * unit; 292 case STRTOSZ_DEFSUFFIX_TB: 293 return unit * unit * unit * unit; 294 case STRTOSZ_DEFSUFFIX_PB: 295 return unit * unit * unit * unit * unit; 296 case STRTOSZ_DEFSUFFIX_EB: 297 return unit * unit * unit * unit * unit * unit; 298 } 299 return -1; 300 } 301 302 /* 303 * Convert string to bytes, allowing either B/b for bytes, K/k for KB, 304 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned 305 * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on 306 * other error. 307 */ 308 int64_t strtosz_suffix_unit(const char *nptr, char **end, 309 const char default_suffix, int64_t unit) 310 { 311 int64_t retval = -EINVAL; 312 char *endptr; 313 unsigned char c; 314 int mul_required = 0; 315 double val, mul, integral, fraction; 316 317 errno = 0; 318 val = strtod(nptr, &endptr); 319 if (isnan(val) || endptr == nptr || errno != 0) { 320 goto fail; 321 } 322 fraction = modf(val, &integral); 323 if (fraction != 0) { 324 mul_required = 1; 325 } 326 c = *endptr; 327 mul = suffix_mul(c, unit); 328 if (mul >= 0) { 329 endptr++; 330 } else { 331 mul = suffix_mul(default_suffix, unit); 332 assert(mul >= 0); 333 } 334 if (mul == 1 && mul_required) { 335 goto fail; 336 } 337 if ((val * mul >= INT64_MAX) || val < 0) { 338 retval = -ERANGE; 339 goto fail; 340 } 341 retval = val * mul; 342 343 fail: 344 if (end) { 345 *end = endptr; 346 } 347 348 return retval; 349 } 350 351 int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix) 352 { 353 return strtosz_suffix_unit(nptr, end, default_suffix, 1024); 354 } 355 356 int64_t strtosz(const char *nptr, char **end) 357 { 358 return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB); 359 } 360 361 /** 362 * parse_uint: 363 * 364 * @s: String to parse 365 * @value: Destination for parsed integer value 366 * @endptr: Destination for pointer to first character not consumed 367 * @base: integer base, between 2 and 36 inclusive, or 0 368 * 369 * Parse unsigned integer 370 * 371 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 372 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 373 * 374 * If @s is null, or @base is invalid, or @s doesn't start with an 375 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 376 * return -EINVAL. 377 * 378 * Set *@endptr to point right beyond the parsed integer (even if the integer 379 * overflows or is negative, all digits will be parsed and *@endptr will 380 * point right beyond them). 381 * 382 * If the integer is negative, set *@value to 0, and return -ERANGE. 383 * 384 * If the integer overflows unsigned long long, set *@value to 385 * ULLONG_MAX, and return -ERANGE. 386 * 387 * Else, set *@value to the parsed integer, and return 0. 388 */ 389 int parse_uint(const char *s, unsigned long long *value, char **endptr, 390 int base) 391 { 392 int r = 0; 393 char *endp = (char *)s; 394 unsigned long long val = 0; 395 396 if (!s) { 397 r = -EINVAL; 398 goto out; 399 } 400 401 errno = 0; 402 val = strtoull(s, &endp, base); 403 if (errno) { 404 r = -errno; 405 goto out; 406 } 407 408 if (endp == s) { 409 r = -EINVAL; 410 goto out; 411 } 412 413 /* make sure we reject negative numbers: */ 414 while (isspace((unsigned char)*s)) { 415 s++; 416 } 417 if (*s == '-') { 418 val = 0; 419 r = -ERANGE; 420 goto out; 421 } 422 423 out: 424 *value = val; 425 *endptr = endp; 426 return r; 427 } 428 429 /** 430 * parse_uint_full: 431 * 432 * @s: String to parse 433 * @value: Destination for parsed integer value 434 * @base: integer base, between 2 and 36 inclusive, or 0 435 * 436 * Parse unsigned integer from entire string 437 * 438 * Have the same behavior of parse_uint(), but with an additional check 439 * for additional data after the parsed number. If extra characters are present 440 * after the parsed number, the function will return -EINVAL, and *@v will 441 * be set to 0. 442 */ 443 int parse_uint_full(const char *s, unsigned long long *value, int base) 444 { 445 char *endp; 446 int r; 447 448 r = parse_uint(s, value, &endp, base); 449 if (r < 0) { 450 return r; 451 } 452 if (*endp) { 453 *value = 0; 454 return -EINVAL; 455 } 456 457 return 0; 458 } 459 460 int qemu_parse_fd(const char *param) 461 { 462 long fd; 463 char *endptr; 464 465 errno = 0; 466 fd = strtol(param, &endptr, 10); 467 if (param == endptr /* no conversion performed */ || 468 errno != 0 /* not representable as long; possibly others */ || 469 *endptr != '\0' /* final string not empty */ || 470 fd < 0 /* invalid as file descriptor */ || 471 fd > INT_MAX /* not representable as int */) { 472 return -1; 473 } 474 return fd; 475 } 476 477 /* round down to the nearest power of 2*/ 478 int64_t pow2floor(int64_t value) 479 { 480 if (!is_power_of_2(value)) { 481 value = 0x8000000000000000ULL >> clz64(value); 482 } 483 return value; 484 } 485 486 /* 487 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 488 * Input is limited to 14-bit numbers 489 */ 490 int uleb128_encode_small(uint8_t *out, uint32_t n) 491 { 492 g_assert(n <= 0x3fff); 493 if (n < 0x80) { 494 *out++ = n; 495 return 1; 496 } else { 497 *out++ = (n & 0x7f) | 0x80; 498 *out++ = n >> 7; 499 return 2; 500 } 501 } 502 503 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 504 { 505 if (!(*in & 0x80)) { 506 *n = *in++; 507 return 1; 508 } else { 509 *n = *in++ & 0x7f; 510 /* we exceed 14 bit number */ 511 if (*in & 0x80) { 512 return -1; 513 } 514 *n |= *in++ << 7; 515 return 2; 516 } 517 } 518 519 /* 520 * helper to parse debug environment variables 521 */ 522 int parse_debug_env(const char *name, int max, int initial) 523 { 524 char *debug_env = getenv(name); 525 char *inv = NULL; 526 int debug; 527 528 if (!debug_env) { 529 return initial; 530 } 531 debug = strtol(debug_env, &inv, 10); 532 if (inv == debug_env) { 533 return initial; 534 } 535 if (debug < 0 || debug > max) { 536 fprintf(stderr, "warning: %s not in [0, %d]", name, max); 537 return initial; 538 } 539 return debug; 540 } 541 542 /* 543 * Helper to print ethernet mac address 544 */ 545 const char *qemu_ether_ntoa(const MACAddr *mac) 546 { 547 static char ret[18]; 548 549 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x", 550 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]); 551 552 return ret; 553 } 554