xref: /openbmc/qemu/util/cutils.c (revision 1fd6bb44)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu-common.h"
25 #include "qemu/host-utils.h"
26 #include <math.h>
27 
28 #include "qemu/sockets.h"
29 #include "qemu/iov.h"
30 
31 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
32 {
33     int len = qemu_strnlen(str, buf_size);
34     memcpy(buf, str, len);
35     memset(buf + len, pad, buf_size - len);
36 }
37 
38 void pstrcpy(char *buf, int buf_size, const char *str)
39 {
40     int c;
41     char *q = buf;
42 
43     if (buf_size <= 0)
44         return;
45 
46     for(;;) {
47         c = *str++;
48         if (c == 0 || q >= buf + buf_size - 1)
49             break;
50         *q++ = c;
51     }
52     *q = '\0';
53 }
54 
55 /* strcat and truncate. */
56 char *pstrcat(char *buf, int buf_size, const char *s)
57 {
58     int len;
59     len = strlen(buf);
60     if (len < buf_size)
61         pstrcpy(buf + len, buf_size - len, s);
62     return buf;
63 }
64 
65 int strstart(const char *str, const char *val, const char **ptr)
66 {
67     const char *p, *q;
68     p = str;
69     q = val;
70     while (*q != '\0') {
71         if (*p != *q)
72             return 0;
73         p++;
74         q++;
75     }
76     if (ptr)
77         *ptr = p;
78     return 1;
79 }
80 
81 int stristart(const char *str, const char *val, const char **ptr)
82 {
83     const char *p, *q;
84     p = str;
85     q = val;
86     while (*q != '\0') {
87         if (qemu_toupper(*p) != qemu_toupper(*q))
88             return 0;
89         p++;
90         q++;
91     }
92     if (ptr)
93         *ptr = p;
94     return 1;
95 }
96 
97 /* XXX: use host strnlen if available ? */
98 int qemu_strnlen(const char *s, int max_len)
99 {
100     int i;
101 
102     for(i = 0; i < max_len; i++) {
103         if (s[i] == '\0') {
104             break;
105         }
106     }
107     return i;
108 }
109 
110 time_t mktimegm(struct tm *tm)
111 {
112     time_t t;
113     int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
114     if (m < 3) {
115         m += 12;
116         y--;
117     }
118     t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
119                  y / 400 - 719469);
120     t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
121     return t;
122 }
123 
124 int qemu_fls(int i)
125 {
126     return 32 - clz32(i);
127 }
128 
129 /*
130  * Make sure data goes on disk, but if possible do not bother to
131  * write out the inode just for timestamp updates.
132  *
133  * Unfortunately even in 2009 many operating systems do not support
134  * fdatasync and have to fall back to fsync.
135  */
136 int qemu_fdatasync(int fd)
137 {
138 #ifdef CONFIG_FDATASYNC
139     return fdatasync(fd);
140 #else
141     return fsync(fd);
142 #endif
143 }
144 
145 /*
146  * Searches for an area with non-zero content in a buffer
147  *
148  * Attention! The len must be a multiple of
149  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
150  * and addr must be a multiple of sizeof(VECTYPE) due to
151  * restriction of optimizations in this function.
152  *
153  * can_use_buffer_find_nonzero_offset() can be used to check
154  * these requirements.
155  *
156  * The return value is the offset of the non-zero area rounded
157  * down to a multiple of sizeof(VECTYPE) for the first
158  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR chunks and down to
159  * BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR * sizeof(VECTYPE)
160  * afterwards.
161  *
162  * If the buffer is all zero the return value is equal to len.
163  */
164 
165 size_t buffer_find_nonzero_offset(const void *buf, size_t len)
166 {
167     const VECTYPE *p = buf;
168     const VECTYPE zero = (VECTYPE){0};
169     size_t i;
170 
171     assert(can_use_buffer_find_nonzero_offset(buf, len));
172 
173     if (!len) {
174         return 0;
175     }
176 
177     for (i = 0; i < BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR; i++) {
178         if (!ALL_EQ(p[i], zero)) {
179             return i * sizeof(VECTYPE);
180         }
181     }
182 
183     for (i = BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR;
184          i < len / sizeof(VECTYPE);
185          i += BUFFER_FIND_NONZERO_OFFSET_UNROLL_FACTOR) {
186         VECTYPE tmp0 = p[i + 0] | p[i + 1];
187         VECTYPE tmp1 = p[i + 2] | p[i + 3];
188         VECTYPE tmp2 = p[i + 4] | p[i + 5];
189         VECTYPE tmp3 = p[i + 6] | p[i + 7];
190         VECTYPE tmp01 = tmp0 | tmp1;
191         VECTYPE tmp23 = tmp2 | tmp3;
192         if (!ALL_EQ(tmp01 | tmp23, zero)) {
193             break;
194         }
195     }
196 
197     return i * sizeof(VECTYPE);
198 }
199 
200 /*
201  * Checks if a buffer is all zeroes
202  *
203  * Attention! The len must be a multiple of 4 * sizeof(long) due to
204  * restriction of optimizations in this function.
205  */
206 bool buffer_is_zero(const void *buf, size_t len)
207 {
208     /*
209      * Use long as the biggest available internal data type that fits into the
210      * CPU register and unroll the loop to smooth out the effect of memory
211      * latency.
212      */
213 
214     size_t i;
215     long d0, d1, d2, d3;
216     const long * const data = buf;
217 
218     /* use vector optimized zero check if possible */
219     if (can_use_buffer_find_nonzero_offset(buf, len)) {
220         return buffer_find_nonzero_offset(buf, len) == len;
221     }
222 
223     assert(len % (4 * sizeof(long)) == 0);
224     len /= sizeof(long);
225 
226     for (i = 0; i < len; i += 4) {
227         d0 = data[i + 0];
228         d1 = data[i + 1];
229         d2 = data[i + 2];
230         d3 = data[i + 3];
231 
232         if (d0 || d1 || d2 || d3) {
233             return false;
234         }
235     }
236 
237     return true;
238 }
239 
240 #ifndef _WIN32
241 /* Sets a specific flag */
242 int fcntl_setfl(int fd, int flag)
243 {
244     int flags;
245 
246     flags = fcntl(fd, F_GETFL);
247     if (flags == -1)
248         return -errno;
249 
250     if (fcntl(fd, F_SETFL, flags | flag) == -1)
251         return -errno;
252 
253     return 0;
254 }
255 #endif
256 
257 static int64_t suffix_mul(char suffix, int64_t unit)
258 {
259     switch (qemu_toupper(suffix)) {
260     case STRTOSZ_DEFSUFFIX_B:
261         return 1;
262     case STRTOSZ_DEFSUFFIX_KB:
263         return unit;
264     case STRTOSZ_DEFSUFFIX_MB:
265         return unit * unit;
266     case STRTOSZ_DEFSUFFIX_GB:
267         return unit * unit * unit;
268     case STRTOSZ_DEFSUFFIX_TB:
269         return unit * unit * unit * unit;
270     }
271     return -1;
272 }
273 
274 /*
275  * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
276  * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
277  * in *end, if not NULL. Return -ERANGE on overflow, Return -EINVAL on
278  * other error.
279  */
280 int64_t strtosz_suffix_unit(const char *nptr, char **end,
281                             const char default_suffix, int64_t unit)
282 {
283     int64_t retval = -EINVAL;
284     char *endptr;
285     unsigned char c;
286     int mul_required = 0;
287     double val, mul, integral, fraction;
288 
289     errno = 0;
290     val = strtod(nptr, &endptr);
291     if (isnan(val) || endptr == nptr || errno != 0) {
292         goto fail;
293     }
294     fraction = modf(val, &integral);
295     if (fraction != 0) {
296         mul_required = 1;
297     }
298     c = *endptr;
299     mul = suffix_mul(c, unit);
300     if (mul >= 0) {
301         endptr++;
302     } else {
303         mul = suffix_mul(default_suffix, unit);
304         assert(mul >= 0);
305     }
306     if (mul == 1 && mul_required) {
307         goto fail;
308     }
309     if ((val * mul >= INT64_MAX) || val < 0) {
310         retval = -ERANGE;
311         goto fail;
312     }
313     retval = val * mul;
314 
315 fail:
316     if (end) {
317         *end = endptr;
318     }
319 
320     return retval;
321 }
322 
323 int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix)
324 {
325     return strtosz_suffix_unit(nptr, end, default_suffix, 1024);
326 }
327 
328 int64_t strtosz(const char *nptr, char **end)
329 {
330     return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
331 }
332 
333 /**
334  * parse_uint:
335  *
336  * @s: String to parse
337  * @value: Destination for parsed integer value
338  * @endptr: Destination for pointer to first character not consumed
339  * @base: integer base, between 2 and 36 inclusive, or 0
340  *
341  * Parse unsigned integer
342  *
343  * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
344  * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
345  *
346  * If @s is null, or @base is invalid, or @s doesn't start with an
347  * integer in the syntax above, set *@value to 0, *@endptr to @s, and
348  * return -EINVAL.
349  *
350  * Set *@endptr to point right beyond the parsed integer (even if the integer
351  * overflows or is negative, all digits will be parsed and *@endptr will
352  * point right beyond them).
353  *
354  * If the integer is negative, set *@value to 0, and return -ERANGE.
355  *
356  * If the integer overflows unsigned long long, set *@value to
357  * ULLONG_MAX, and return -ERANGE.
358  *
359  * Else, set *@value to the parsed integer, and return 0.
360  */
361 int parse_uint(const char *s, unsigned long long *value, char **endptr,
362                int base)
363 {
364     int r = 0;
365     char *endp = (char *)s;
366     unsigned long long val = 0;
367 
368     if (!s) {
369         r = -EINVAL;
370         goto out;
371     }
372 
373     errno = 0;
374     val = strtoull(s, &endp, base);
375     if (errno) {
376         r = -errno;
377         goto out;
378     }
379 
380     if (endp == s) {
381         r = -EINVAL;
382         goto out;
383     }
384 
385     /* make sure we reject negative numbers: */
386     while (isspace((unsigned char)*s)) {
387         s++;
388     }
389     if (*s == '-') {
390         val = 0;
391         r = -ERANGE;
392         goto out;
393     }
394 
395 out:
396     *value = val;
397     *endptr = endp;
398     return r;
399 }
400 
401 /**
402  * parse_uint_full:
403  *
404  * @s: String to parse
405  * @value: Destination for parsed integer value
406  * @base: integer base, between 2 and 36 inclusive, or 0
407  *
408  * Parse unsigned integer from entire string
409  *
410  * Have the same behavior of parse_uint(), but with an additional check
411  * for additional data after the parsed number. If extra characters are present
412  * after the parsed number, the function will return -EINVAL, and *@v will
413  * be set to 0.
414  */
415 int parse_uint_full(const char *s, unsigned long long *value, int base)
416 {
417     char *endp;
418     int r;
419 
420     r = parse_uint(s, value, &endp, base);
421     if (r < 0) {
422         return r;
423     }
424     if (*endp) {
425         *value = 0;
426         return -EINVAL;
427     }
428 
429     return 0;
430 }
431 
432 int qemu_parse_fd(const char *param)
433 {
434     int fd;
435     char *endptr = NULL;
436 
437     fd = strtol(param, &endptr, 10);
438     if (*endptr || (fd == 0 && param == endptr)) {
439         return -1;
440     }
441     return fd;
442 }
443 
444 /* round down to the nearest power of 2*/
445 int64_t pow2floor(int64_t value)
446 {
447     if (!is_power_of_2(value)) {
448         value = 0x8000000000000000ULL >> clz64(value);
449     }
450     return value;
451 }
452 
453 /*
454  * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
455  * Input is limited to 14-bit numbers
456  */
457 int uleb128_encode_small(uint8_t *out, uint32_t n)
458 {
459     g_assert(n <= 0x3fff);
460     if (n < 0x80) {
461         *out++ = n;
462         return 1;
463     } else {
464         *out++ = (n & 0x7f) | 0x80;
465         *out++ = n >> 7;
466         return 2;
467     }
468 }
469 
470 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
471 {
472     if (!(*in & 0x80)) {
473         *n = *in++;
474         return 1;
475     } else {
476         *n = *in++ & 0x7f;
477         /* we exceed 14 bit number */
478         if (*in & 0x80) {
479             return -1;
480         }
481         *n |= *in++ << 7;
482         return 2;
483     }
484 }
485