1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #include "qemu-common.h" 30 #include "qemu/sockets.h" 31 #include "qemu/iov.h" 32 #include "net/net.h" 33 #include "qemu/ctype.h" 34 #include "qemu/cutils.h" 35 #include "qemu/error-report.h" 36 37 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 38 { 39 int len = qemu_strnlen(str, buf_size); 40 memcpy(buf, str, len); 41 memset(buf + len, pad, buf_size - len); 42 } 43 44 void pstrcpy(char *buf, int buf_size, const char *str) 45 { 46 int c; 47 char *q = buf; 48 49 if (buf_size <= 0) 50 return; 51 52 for(;;) { 53 c = *str++; 54 if (c == 0 || q >= buf + buf_size - 1) 55 break; 56 *q++ = c; 57 } 58 *q = '\0'; 59 } 60 61 /* strcat and truncate. */ 62 char *pstrcat(char *buf, int buf_size, const char *s) 63 { 64 int len; 65 len = strlen(buf); 66 if (len < buf_size) 67 pstrcpy(buf + len, buf_size - len, s); 68 return buf; 69 } 70 71 int strstart(const char *str, const char *val, const char **ptr) 72 { 73 const char *p, *q; 74 p = str; 75 q = val; 76 while (*q != '\0') { 77 if (*p != *q) 78 return 0; 79 p++; 80 q++; 81 } 82 if (ptr) 83 *ptr = p; 84 return 1; 85 } 86 87 int stristart(const char *str, const char *val, const char **ptr) 88 { 89 const char *p, *q; 90 p = str; 91 q = val; 92 while (*q != '\0') { 93 if (qemu_toupper(*p) != qemu_toupper(*q)) 94 return 0; 95 p++; 96 q++; 97 } 98 if (ptr) 99 *ptr = p; 100 return 1; 101 } 102 103 /* XXX: use host strnlen if available ? */ 104 int qemu_strnlen(const char *s, int max_len) 105 { 106 int i; 107 108 for(i = 0; i < max_len; i++) { 109 if (s[i] == '\0') { 110 break; 111 } 112 } 113 return i; 114 } 115 116 char *qemu_strsep(char **input, const char *delim) 117 { 118 char *result = *input; 119 if (result != NULL) { 120 char *p; 121 122 for (p = result; *p != '\0'; p++) { 123 if (strchr(delim, *p)) { 124 break; 125 } 126 } 127 if (*p == '\0') { 128 *input = NULL; 129 } else { 130 *p = '\0'; 131 *input = p + 1; 132 } 133 } 134 return result; 135 } 136 137 time_t mktimegm(struct tm *tm) 138 { 139 time_t t; 140 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 141 if (m < 3) { 142 m += 12; 143 y--; 144 } 145 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 146 y / 400 - 719469); 147 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 148 return t; 149 } 150 151 /* 152 * Make sure data goes on disk, but if possible do not bother to 153 * write out the inode just for timestamp updates. 154 * 155 * Unfortunately even in 2009 many operating systems do not support 156 * fdatasync and have to fall back to fsync. 157 */ 158 int qemu_fdatasync(int fd) 159 { 160 #ifdef CONFIG_FDATASYNC 161 return fdatasync(fd); 162 #else 163 return fsync(fd); 164 #endif 165 } 166 167 /** 168 * Sync changes made to the memory mapped file back to the backing 169 * storage. For POSIX compliant systems this will fallback 170 * to regular msync call. Otherwise it will trigger whole file sync 171 * (including the metadata case there is no support to skip that otherwise) 172 * 173 * @addr - start of the memory area to be synced 174 * @length - length of the are to be synced 175 * @fd - file descriptor for the file to be synced 176 * (mandatory only for POSIX non-compliant systems) 177 */ 178 int qemu_msync(void *addr, size_t length, int fd) 179 { 180 #ifdef CONFIG_POSIX 181 size_t align_mask = ~(qemu_real_host_page_size - 1); 182 183 /** 184 * There are no strict reqs as per the length of mapping 185 * to be synced. Still the length needs to follow the address 186 * alignment changes. Additionally - round the size to the multiple 187 * of PAGE_SIZE 188 */ 189 length += ((uintptr_t)addr & (qemu_real_host_page_size - 1)); 190 length = (length + ~align_mask) & align_mask; 191 192 addr = (void *)((uintptr_t)addr & align_mask); 193 194 return msync(addr, length, MS_SYNC); 195 #else /* CONFIG_POSIX */ 196 /** 197 * Perform the sync based on the file descriptor 198 * The sync range will most probably be wider than the one 199 * requested - but it will still get the job done 200 */ 201 return qemu_fdatasync(fd); 202 #endif /* CONFIG_POSIX */ 203 } 204 205 #ifndef _WIN32 206 /* Sets a specific flag */ 207 int fcntl_setfl(int fd, int flag) 208 { 209 int flags; 210 211 flags = fcntl(fd, F_GETFL); 212 if (flags == -1) 213 return -errno; 214 215 if (fcntl(fd, F_SETFL, flags | flag) == -1) 216 return -errno; 217 218 return 0; 219 } 220 #endif 221 222 static int64_t suffix_mul(char suffix, int64_t unit) 223 { 224 switch (qemu_toupper(suffix)) { 225 case 'B': 226 return 1; 227 case 'K': 228 return unit; 229 case 'M': 230 return unit * unit; 231 case 'G': 232 return unit * unit * unit; 233 case 'T': 234 return unit * unit * unit * unit; 235 case 'P': 236 return unit * unit * unit * unit * unit; 237 case 'E': 238 return unit * unit * unit * unit * unit * unit; 239 } 240 return -1; 241 } 242 243 /* 244 * Convert size string to bytes. 245 * 246 * The size parsing supports the following syntaxes 247 * - 12345 - decimal, scale determined by @default_suffix and @unit 248 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 249 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 250 * fractional portion is truncated to byte 251 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 252 * 253 * The following cause a deprecation warning, and may be removed in the future 254 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix 255 * 256 * The following are intentionally not supported 257 * - octal, such as 08 258 * - fractional hex, such as 0x1.8 259 * - floating point exponents, such as 1e3 260 * 261 * The end pointer will be returned in *end, if not NULL. If there is 262 * no fraction, the input can be decimal or hexadecimal; if there is a 263 * fraction, then the input must be decimal and there must be a suffix 264 * (possibly by @default_suffix) larger than Byte, and the fractional 265 * portion may suffer from precision loss or rounding. The input must 266 * be positive. 267 * 268 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 269 * other error (with *@end left unchanged). 270 */ 271 static int do_strtosz(const char *nptr, const char **end, 272 const char default_suffix, int64_t unit, 273 uint64_t *result) 274 { 275 int retval; 276 const char *endptr, *f; 277 unsigned char c; 278 bool hex = false; 279 uint64_t val, valf = 0; 280 int64_t mul; 281 282 /* Parse integral portion as decimal. */ 283 retval = qemu_strtou64(nptr, &endptr, 10, &val); 284 if (retval) { 285 goto out; 286 } 287 if (memchr(nptr, '-', endptr - nptr) != NULL) { 288 endptr = nptr; 289 retval = -EINVAL; 290 goto out; 291 } 292 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) { 293 /* Input looks like hex, reparse, and insist on no fraction. */ 294 retval = qemu_strtou64(nptr, &endptr, 16, &val); 295 if (retval) { 296 goto out; 297 } 298 if (*endptr == '.') { 299 endptr = nptr; 300 retval = -EINVAL; 301 goto out; 302 } 303 hex = true; 304 } else if (*endptr == '.') { 305 /* 306 * Input looks like a fraction. Make sure even 1.k works 307 * without fractional digits. If we see an exponent, treat 308 * the entire input as invalid instead. 309 */ 310 double fraction; 311 312 f = endptr; 313 retval = qemu_strtod_finite(f, &endptr, &fraction); 314 if (retval) { 315 endptr++; 316 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) { 317 endptr = nptr; 318 retval = -EINVAL; 319 goto out; 320 } else { 321 /* Extract into a 64-bit fixed-point fraction. */ 322 valf = (uint64_t)(fraction * 0x1p64); 323 } 324 } 325 c = *endptr; 326 mul = suffix_mul(c, unit); 327 if (mul > 0) { 328 if (hex) { 329 warn_report("Using a multiplier suffix on hex numbers " 330 "is deprecated: %s", nptr); 331 } 332 endptr++; 333 } else { 334 mul = suffix_mul(default_suffix, unit); 335 assert(mul > 0); 336 } 337 if (mul == 1) { 338 /* When a fraction is present, a scale is required. */ 339 if (valf != 0) { 340 endptr = nptr; 341 retval = -EINVAL; 342 goto out; 343 } 344 } else { 345 uint64_t valh, tmp; 346 347 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 348 mulu64(&val, &valh, val, mul); 349 mulu64(&valf, &tmp, valf, mul); 350 val += tmp; 351 valh += val < tmp; 352 353 /* Round 0.5 upward. */ 354 tmp = valf >> 63; 355 val += tmp; 356 valh += val < tmp; 357 358 /* Report overflow. */ 359 if (valh != 0) { 360 retval = -ERANGE; 361 goto out; 362 } 363 } 364 365 retval = 0; 366 367 out: 368 if (end) { 369 *end = endptr; 370 } else if (*endptr) { 371 retval = -EINVAL; 372 } 373 if (retval == 0) { 374 *result = val; 375 } 376 377 return retval; 378 } 379 380 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 381 { 382 return do_strtosz(nptr, end, 'B', 1024, result); 383 } 384 385 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 386 { 387 return do_strtosz(nptr, end, 'M', 1024, result); 388 } 389 390 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 391 { 392 return do_strtosz(nptr, end, 'B', 1000, result); 393 } 394 395 /** 396 * Helper function for error checking after strtol() and the like 397 */ 398 static int check_strtox_error(const char *nptr, char *ep, 399 const char **endptr, bool check_zero, 400 int libc_errno) 401 { 402 assert(ep >= nptr); 403 404 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ 405 if (check_zero && ep == nptr && libc_errno == 0) { 406 char *tmp; 407 408 errno = 0; 409 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && 410 (*tmp == 'x' || *tmp == 'X')) { 411 ep = tmp; 412 } 413 } 414 415 if (endptr) { 416 *endptr = ep; 417 } 418 419 /* Turn "no conversion" into an error */ 420 if (libc_errno == 0 && ep == nptr) { 421 return -EINVAL; 422 } 423 424 /* Fail when we're expected to consume the string, but didn't */ 425 if (!endptr && *ep) { 426 return -EINVAL; 427 } 428 429 return -libc_errno; 430 } 431 432 /** 433 * Convert string @nptr to an integer, and store it in @result. 434 * 435 * This is a wrapper around strtol() that is harder to misuse. 436 * Semantics of @nptr, @endptr, @base match strtol() with differences 437 * noted below. 438 * 439 * @nptr may be null, and no conversion is performed then. 440 * 441 * If no conversion is performed, store @nptr in *@endptr and return 442 * -EINVAL. 443 * 444 * If @endptr is null, and the string isn't fully converted, return 445 * -EINVAL. This is the case when the pointer that would be stored in 446 * a non-null @endptr points to a character other than '\0'. 447 * 448 * If the conversion overflows @result, store INT_MAX in @result, 449 * and return -ERANGE. 450 * 451 * If the conversion underflows @result, store INT_MIN in @result, 452 * and return -ERANGE. 453 * 454 * Else store the converted value in @result, and return zero. 455 */ 456 int qemu_strtoi(const char *nptr, const char **endptr, int base, 457 int *result) 458 { 459 char *ep; 460 long long lresult; 461 462 assert((unsigned) base <= 36 && base != 1); 463 if (!nptr) { 464 if (endptr) { 465 *endptr = nptr; 466 } 467 return -EINVAL; 468 } 469 470 errno = 0; 471 lresult = strtoll(nptr, &ep, base); 472 if (lresult < INT_MIN) { 473 *result = INT_MIN; 474 errno = ERANGE; 475 } else if (lresult > INT_MAX) { 476 *result = INT_MAX; 477 errno = ERANGE; 478 } else { 479 *result = lresult; 480 } 481 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 482 } 483 484 /** 485 * Convert string @nptr to an unsigned integer, and store it in @result. 486 * 487 * This is a wrapper around strtoul() that is harder to misuse. 488 * Semantics of @nptr, @endptr, @base match strtoul() with differences 489 * noted below. 490 * 491 * @nptr may be null, and no conversion is performed then. 492 * 493 * If no conversion is performed, store @nptr in *@endptr and return 494 * -EINVAL. 495 * 496 * If @endptr is null, and the string isn't fully converted, return 497 * -EINVAL. This is the case when the pointer that would be stored in 498 * a non-null @endptr points to a character other than '\0'. 499 * 500 * If the conversion overflows @result, store UINT_MAX in @result, 501 * and return -ERANGE. 502 * 503 * Else store the converted value in @result, and return zero. 504 * 505 * Note that a number with a leading minus sign gets converted without 506 * the minus sign, checked for overflow (see above), then negated (in 507 * @result's type). This is exactly how strtoul() works. 508 */ 509 int qemu_strtoui(const char *nptr, const char **endptr, int base, 510 unsigned int *result) 511 { 512 char *ep; 513 long long lresult; 514 515 assert((unsigned) base <= 36 && base != 1); 516 if (!nptr) { 517 if (endptr) { 518 *endptr = nptr; 519 } 520 return -EINVAL; 521 } 522 523 errno = 0; 524 lresult = strtoull(nptr, &ep, base); 525 526 /* Windows returns 1 for negative out-of-range values. */ 527 if (errno == ERANGE) { 528 *result = -1; 529 } else { 530 if (lresult > UINT_MAX) { 531 *result = UINT_MAX; 532 errno = ERANGE; 533 } else if (lresult < INT_MIN) { 534 *result = UINT_MAX; 535 errno = ERANGE; 536 } else { 537 *result = lresult; 538 } 539 } 540 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 541 } 542 543 /** 544 * Convert string @nptr to a long integer, and store it in @result. 545 * 546 * This is a wrapper around strtol() that is harder to misuse. 547 * Semantics of @nptr, @endptr, @base match strtol() with differences 548 * noted below. 549 * 550 * @nptr may be null, and no conversion is performed then. 551 * 552 * If no conversion is performed, store @nptr in *@endptr and return 553 * -EINVAL. 554 * 555 * If @endptr is null, and the string isn't fully converted, return 556 * -EINVAL. This is the case when the pointer that would be stored in 557 * a non-null @endptr points to a character other than '\0'. 558 * 559 * If the conversion overflows @result, store LONG_MAX in @result, 560 * and return -ERANGE. 561 * 562 * If the conversion underflows @result, store LONG_MIN in @result, 563 * and return -ERANGE. 564 * 565 * Else store the converted value in @result, and return zero. 566 */ 567 int qemu_strtol(const char *nptr, const char **endptr, int base, 568 long *result) 569 { 570 char *ep; 571 572 assert((unsigned) base <= 36 && base != 1); 573 if (!nptr) { 574 if (endptr) { 575 *endptr = nptr; 576 } 577 return -EINVAL; 578 } 579 580 errno = 0; 581 *result = strtol(nptr, &ep, base); 582 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 583 } 584 585 /** 586 * Convert string @nptr to an unsigned long, and store it in @result. 587 * 588 * This is a wrapper around strtoul() that is harder to misuse. 589 * Semantics of @nptr, @endptr, @base match strtoul() with differences 590 * noted below. 591 * 592 * @nptr may be null, and no conversion is performed then. 593 * 594 * If no conversion is performed, store @nptr in *@endptr and return 595 * -EINVAL. 596 * 597 * If @endptr is null, and the string isn't fully converted, return 598 * -EINVAL. This is the case when the pointer that would be stored in 599 * a non-null @endptr points to a character other than '\0'. 600 * 601 * If the conversion overflows @result, store ULONG_MAX in @result, 602 * and return -ERANGE. 603 * 604 * Else store the converted value in @result, and return zero. 605 * 606 * Note that a number with a leading minus sign gets converted without 607 * the minus sign, checked for overflow (see above), then negated (in 608 * @result's type). This is exactly how strtoul() works. 609 */ 610 int qemu_strtoul(const char *nptr, const char **endptr, int base, 611 unsigned long *result) 612 { 613 char *ep; 614 615 assert((unsigned) base <= 36 && base != 1); 616 if (!nptr) { 617 if (endptr) { 618 *endptr = nptr; 619 } 620 return -EINVAL; 621 } 622 623 errno = 0; 624 *result = strtoul(nptr, &ep, base); 625 /* Windows returns 1 for negative out-of-range values. */ 626 if (errno == ERANGE) { 627 *result = -1; 628 } 629 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 630 } 631 632 /** 633 * Convert string @nptr to an int64_t. 634 * 635 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 636 * and INT64_MIN on underflow. 637 */ 638 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 639 int64_t *result) 640 { 641 char *ep; 642 643 assert((unsigned) base <= 36 && base != 1); 644 if (!nptr) { 645 if (endptr) { 646 *endptr = nptr; 647 } 648 return -EINVAL; 649 } 650 651 /* This assumes int64_t is long long TODO relax */ 652 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 653 errno = 0; 654 *result = strtoll(nptr, &ep, base); 655 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 656 } 657 658 /** 659 * Convert string @nptr to an uint64_t. 660 * 661 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 662 */ 663 int qemu_strtou64(const char *nptr, const char **endptr, int base, 664 uint64_t *result) 665 { 666 char *ep; 667 668 assert((unsigned) base <= 36 && base != 1); 669 if (!nptr) { 670 if (endptr) { 671 *endptr = nptr; 672 } 673 return -EINVAL; 674 } 675 676 /* This assumes uint64_t is unsigned long long TODO relax */ 677 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 678 errno = 0; 679 *result = strtoull(nptr, &ep, base); 680 /* Windows returns 1 for negative out-of-range values. */ 681 if (errno == ERANGE) { 682 *result = -1; 683 } 684 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 685 } 686 687 /** 688 * Convert string @nptr to a double. 689 * 690 * This is a wrapper around strtod() that is harder to misuse. 691 * Semantics of @nptr and @endptr match strtod() with differences 692 * noted below. 693 * 694 * @nptr may be null, and no conversion is performed then. 695 * 696 * If no conversion is performed, store @nptr in *@endptr and return 697 * -EINVAL. 698 * 699 * If @endptr is null, and the string isn't fully converted, return 700 * -EINVAL. This is the case when the pointer that would be stored in 701 * a non-null @endptr points to a character other than '\0'. 702 * 703 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 704 * on the sign, and return -ERANGE. 705 * 706 * If the conversion underflows, store +/-0.0 in @result, depending on the 707 * sign, and return -ERANGE. 708 * 709 * Else store the converted value in @result, and return zero. 710 */ 711 int qemu_strtod(const char *nptr, const char **endptr, double *result) 712 { 713 char *ep; 714 715 if (!nptr) { 716 if (endptr) { 717 *endptr = nptr; 718 } 719 return -EINVAL; 720 } 721 722 errno = 0; 723 *result = strtod(nptr, &ep); 724 return check_strtox_error(nptr, ep, endptr, false, errno); 725 } 726 727 /** 728 * Convert string @nptr to a finite double. 729 * 730 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected 731 * with -EINVAL and no conversion is performed. 732 */ 733 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 734 { 735 double tmp; 736 int ret; 737 738 ret = qemu_strtod(nptr, endptr, &tmp); 739 if (!ret && !isfinite(tmp)) { 740 if (endptr) { 741 *endptr = nptr; 742 } 743 ret = -EINVAL; 744 } 745 746 if (ret != -EINVAL) { 747 *result = tmp; 748 } 749 return ret; 750 } 751 752 /** 753 * Searches for the first occurrence of 'c' in 's', and returns a pointer 754 * to the trailing null byte if none was found. 755 */ 756 #ifndef HAVE_STRCHRNUL 757 const char *qemu_strchrnul(const char *s, int c) 758 { 759 const char *e = strchr(s, c); 760 if (!e) { 761 e = s + strlen(s); 762 } 763 return e; 764 } 765 #endif 766 767 /** 768 * parse_uint: 769 * 770 * @s: String to parse 771 * @value: Destination for parsed integer value 772 * @endptr: Destination for pointer to first character not consumed 773 * @base: integer base, between 2 and 36 inclusive, or 0 774 * 775 * Parse unsigned integer 776 * 777 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 778 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 779 * 780 * If @s is null, or @base is invalid, or @s doesn't start with an 781 * integer in the syntax above, set *@value to 0, *@endptr to @s, and 782 * return -EINVAL. 783 * 784 * Set *@endptr to point right beyond the parsed integer (even if the integer 785 * overflows or is negative, all digits will be parsed and *@endptr will 786 * point right beyond them). 787 * 788 * If the integer is negative, set *@value to 0, and return -ERANGE. 789 * 790 * If the integer overflows unsigned long long, set *@value to 791 * ULLONG_MAX, and return -ERANGE. 792 * 793 * Else, set *@value to the parsed integer, and return 0. 794 */ 795 int parse_uint(const char *s, unsigned long long *value, char **endptr, 796 int base) 797 { 798 int r = 0; 799 char *endp = (char *)s; 800 unsigned long long val = 0; 801 802 assert((unsigned) base <= 36 && base != 1); 803 if (!s) { 804 r = -EINVAL; 805 goto out; 806 } 807 808 errno = 0; 809 val = strtoull(s, &endp, base); 810 if (errno) { 811 r = -errno; 812 goto out; 813 } 814 815 if (endp == s) { 816 r = -EINVAL; 817 goto out; 818 } 819 820 /* make sure we reject negative numbers: */ 821 while (qemu_isspace(*s)) { 822 s++; 823 } 824 if (*s == '-') { 825 val = 0; 826 r = -ERANGE; 827 goto out; 828 } 829 830 out: 831 *value = val; 832 *endptr = endp; 833 return r; 834 } 835 836 /** 837 * parse_uint_full: 838 * 839 * @s: String to parse 840 * @value: Destination for parsed integer value 841 * @base: integer base, between 2 and 36 inclusive, or 0 842 * 843 * Parse unsigned integer from entire string 844 * 845 * Have the same behavior of parse_uint(), but with an additional check 846 * for additional data after the parsed number. If extra characters are present 847 * after the parsed number, the function will return -EINVAL, and *@v will 848 * be set to 0. 849 */ 850 int parse_uint_full(const char *s, unsigned long long *value, int base) 851 { 852 char *endp; 853 int r; 854 855 r = parse_uint(s, value, &endp, base); 856 if (r < 0) { 857 return r; 858 } 859 if (*endp) { 860 *value = 0; 861 return -EINVAL; 862 } 863 864 return 0; 865 } 866 867 int qemu_parse_fd(const char *param) 868 { 869 long fd; 870 char *endptr; 871 872 errno = 0; 873 fd = strtol(param, &endptr, 10); 874 if (param == endptr /* no conversion performed */ || 875 errno != 0 /* not representable as long; possibly others */ || 876 *endptr != '\0' /* final string not empty */ || 877 fd < 0 /* invalid as file descriptor */ || 878 fd > INT_MAX /* not representable as int */) { 879 return -1; 880 } 881 return fd; 882 } 883 884 /* 885 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 886 * Input is limited to 14-bit numbers 887 */ 888 int uleb128_encode_small(uint8_t *out, uint32_t n) 889 { 890 g_assert(n <= 0x3fff); 891 if (n < 0x80) { 892 *out = n; 893 return 1; 894 } else { 895 *out++ = (n & 0x7f) | 0x80; 896 *out = n >> 7; 897 return 2; 898 } 899 } 900 901 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 902 { 903 if (!(*in & 0x80)) { 904 *n = *in; 905 return 1; 906 } else { 907 *n = *in++ & 0x7f; 908 /* we exceed 14 bit number */ 909 if (*in & 0x80) { 910 return -1; 911 } 912 *n |= *in << 7; 913 return 2; 914 } 915 } 916 917 /* 918 * helper to parse debug environment variables 919 */ 920 int parse_debug_env(const char *name, int max, int initial) 921 { 922 char *debug_env = getenv(name); 923 char *inv = NULL; 924 long debug; 925 926 if (!debug_env) { 927 return initial; 928 } 929 errno = 0; 930 debug = strtol(debug_env, &inv, 10); 931 if (inv == debug_env) { 932 return initial; 933 } 934 if (debug < 0 || debug > max || errno != 0) { 935 warn_report("%s not in [0, %d]", name, max); 936 return initial; 937 } 938 return debug; 939 } 940 941 /* 942 * Helper to print ethernet mac address 943 */ 944 const char *qemu_ether_ntoa(const MACAddr *mac) 945 { 946 static char ret[18]; 947 948 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x", 949 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]); 950 951 return ret; 952 } 953 954 /* 955 * Return human readable string for size @val. 956 * @val can be anything that uint64_t allows (no more than "16 EiB"). 957 * Use IEC binary units like KiB, MiB, and so forth. 958 * Caller is responsible for passing it to g_free(). 959 */ 960 char *size_to_str(uint64_t val) 961 { 962 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 963 uint64_t div; 964 int i; 965 966 /* 967 * The exponent (returned in i) minus one gives us 968 * floor(log2(val * 1024 / 1000). The correction makes us 969 * switch to the higher power when the integer part is >= 1000. 970 * (see e41b509d68afb1f for more info) 971 */ 972 frexp(val / (1000.0 / 1024.0), &i); 973 i = (i - 1) / 10; 974 div = 1ULL << (i * 10); 975 976 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]); 977 } 978 979 char *freq_to_str(uint64_t freq_hz) 980 { 981 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" }; 982 double freq = freq_hz; 983 size_t idx = 0; 984 985 while (freq >= 1000.0) { 986 freq /= 1000.0; 987 idx++; 988 } 989 assert(idx < ARRAY_SIZE(suffixes)); 990 991 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]); 992 } 993 994 int qemu_pstrcmp0(const char **str1, const char **str2) 995 { 996 return g_strcmp0(*str1, *str2); 997 } 998 999 static inline bool starts_with_prefix(const char *dir) 1000 { 1001 size_t prefix_len = strlen(CONFIG_PREFIX); 1002 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 1003 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 1004 } 1005 1006 /* Return the next path component in dir, and store its length in *p_len. */ 1007 static inline const char *next_component(const char *dir, int *p_len) 1008 { 1009 int len; 1010 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 1011 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 1012 dir++; 1013 } 1014 len = 0; 1015 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 1016 len++; 1017 } 1018 *p_len = len; 1019 return dir; 1020 } 1021 1022 char *get_relocated_path(const char *dir) 1023 { 1024 size_t prefix_len = strlen(CONFIG_PREFIX); 1025 const char *bindir = CONFIG_BINDIR; 1026 const char *exec_dir = qemu_get_exec_dir(); 1027 GString *result; 1028 int len_dir, len_bindir; 1029 1030 /* Fail if qemu_init_exec_dir was not called. */ 1031 assert(exec_dir[0]); 1032 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { 1033 return g_strdup(dir); 1034 } 1035 1036 result = g_string_new(exec_dir); 1037 1038 /* Advance over common components. */ 1039 len_dir = len_bindir = prefix_len; 1040 do { 1041 dir += len_dir; 1042 bindir += len_bindir; 1043 dir = next_component(dir, &len_dir); 1044 bindir = next_component(bindir, &len_bindir); 1045 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 1046 1047 /* Ascend from bindir to the common prefix with dir. */ 1048 while (len_bindir) { 1049 bindir += len_bindir; 1050 g_string_append(result, "/.."); 1051 bindir = next_component(bindir, &len_bindir); 1052 } 1053 1054 if (*dir) { 1055 assert(G_IS_DIR_SEPARATOR(dir[-1])); 1056 g_string_append(result, dir - 1); 1057 } 1058 return result->str; 1059 } 1060