1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/host-utils.h" 27 #include <math.h> 28 29 #ifdef __FreeBSD__ 30 #include <sys/sysctl.h> 31 #include <sys/user.h> 32 #endif 33 34 #ifdef __NetBSD__ 35 #include <sys/sysctl.h> 36 #endif 37 38 #ifdef __HAIKU__ 39 #include <kernel/image.h> 40 #endif 41 42 #ifdef __APPLE__ 43 #include <mach-o/dyld.h> 44 #endif 45 46 #ifdef G_OS_WIN32 47 #include <pathcch.h> 48 #include <wchar.h> 49 #endif 50 51 #include "qemu/ctype.h" 52 #include "qemu/cutils.h" 53 #include "qemu/error-report.h" 54 55 void strpadcpy(char *buf, int buf_size, const char *str, char pad) 56 { 57 int len = qemu_strnlen(str, buf_size); 58 memcpy(buf, str, len); 59 memset(buf + len, pad, buf_size - len); 60 } 61 62 void pstrcpy(char *buf, int buf_size, const char *str) 63 { 64 int c; 65 char *q = buf; 66 67 if (buf_size <= 0) 68 return; 69 70 for(;;) { 71 c = *str++; 72 if (c == 0 || q >= buf + buf_size - 1) 73 break; 74 *q++ = c; 75 } 76 *q = '\0'; 77 } 78 79 /* strcat and truncate. */ 80 char *pstrcat(char *buf, int buf_size, const char *s) 81 { 82 int len; 83 len = strlen(buf); 84 if (len < buf_size) 85 pstrcpy(buf + len, buf_size - len, s); 86 return buf; 87 } 88 89 int strstart(const char *str, const char *val, const char **ptr) 90 { 91 const char *p, *q; 92 p = str; 93 q = val; 94 while (*q != '\0') { 95 if (*p != *q) 96 return 0; 97 p++; 98 q++; 99 } 100 if (ptr) 101 *ptr = p; 102 return 1; 103 } 104 105 int stristart(const char *str, const char *val, const char **ptr) 106 { 107 const char *p, *q; 108 p = str; 109 q = val; 110 while (*q != '\0') { 111 if (qemu_toupper(*p) != qemu_toupper(*q)) 112 return 0; 113 p++; 114 q++; 115 } 116 if (ptr) 117 *ptr = p; 118 return 1; 119 } 120 121 /* XXX: use host strnlen if available ? */ 122 int qemu_strnlen(const char *s, int max_len) 123 { 124 int i; 125 126 for(i = 0; i < max_len; i++) { 127 if (s[i] == '\0') { 128 break; 129 } 130 } 131 return i; 132 } 133 134 char *qemu_strsep(char **input, const char *delim) 135 { 136 char *result = *input; 137 if (result != NULL) { 138 char *p; 139 140 for (p = result; *p != '\0'; p++) { 141 if (strchr(delim, *p)) { 142 break; 143 } 144 } 145 if (*p == '\0') { 146 *input = NULL; 147 } else { 148 *p = '\0'; 149 *input = p + 1; 150 } 151 } 152 return result; 153 } 154 155 time_t mktimegm(struct tm *tm) 156 { 157 time_t t; 158 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; 159 if (m < 3) { 160 m += 12; 161 y--; 162 } 163 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 164 y / 400 - 719469); 165 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; 166 return t; 167 } 168 169 static int64_t suffix_mul(char suffix, int64_t unit) 170 { 171 switch (qemu_toupper(suffix)) { 172 case 'B': 173 return 1; 174 case 'K': 175 return unit; 176 case 'M': 177 return unit * unit; 178 case 'G': 179 return unit * unit * unit; 180 case 'T': 181 return unit * unit * unit * unit; 182 case 'P': 183 return unit * unit * unit * unit * unit; 184 case 'E': 185 return unit * unit * unit * unit * unit * unit; 186 } 187 return -1; 188 } 189 190 /* 191 * Convert size string to bytes. 192 * 193 * The size parsing supports the following syntaxes 194 * - 12345 - decimal, scale determined by @default_suffix and @unit 195 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit 196 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and 197 * fractional portion is truncated to byte, either side of . may be empty 198 * - 0x7fEE - hexadecimal, unit determined by @default_suffix 199 * 200 * The following are intentionally not supported 201 * - hex with scaling suffix, such as 0x20M or 0x1p3 (both fail with 202 * -EINVAL), while 0x1b is 27 (not 1 with byte scale) 203 * - octal, such as 08 (parsed as decimal instead) 204 * - binary, such as 0b1000 (parsed as 0b with trailing garbage "1000") 205 * - fractional hex, such as 0x1.8 (parsed as 0 with trailing garbage "x1.8") 206 * - negative values, including -0 (fail with -ERANGE) 207 * - floating point exponents, such as 1e3 (parsed as 1e with trailing 208 * garbage "3") or 0x1p3 (rejected as hex with scaling suffix) 209 * - non-finite values, such as inf or NaN (fail with -EINVAL) 210 * 211 * The end pointer will be returned in *end, if not NULL. If there is 212 * no fraction, the input can be decimal or hexadecimal; if there is a 213 * non-zero fraction, then the input must be decimal and there must be 214 * a suffix (possibly by @default_suffix) larger than Byte, and the 215 * fractional portion may suffer from precision loss or rounding. The 216 * input must be positive. 217 * 218 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on 219 * other error (with *@end at @nptr). Unlike strtoull, *@result is 220 * set to 0 on all errors, as returning UINT64_MAX on overflow is less 221 * likely to be usable as a size. 222 */ 223 static int do_strtosz(const char *nptr, const char **end, 224 const char default_suffix, int64_t unit, 225 uint64_t *result) 226 { 227 int retval; 228 const char *endptr; 229 unsigned char c; 230 uint64_t val = 0, valf = 0; 231 int64_t mul; 232 233 /* Parse integral portion as decimal. */ 234 retval = parse_uint(nptr, &endptr, 10, &val); 235 if (retval == -ERANGE || !nptr) { 236 goto out; 237 } 238 if (retval == 0 && val == 0 && (*endptr == 'x' || *endptr == 'X')) { 239 /* Input looks like hex; reparse, and insist on no fraction or suffix. */ 240 retval = qemu_strtou64(nptr, &endptr, 16, &val); 241 if (retval) { 242 goto out; 243 } 244 if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) { 245 endptr = nptr; 246 retval = -EINVAL; 247 goto out; 248 } 249 } else if (*endptr == '.' || (endptr == nptr && strchr(nptr, '.'))) { 250 /* 251 * Input looks like a fraction. Make sure even 1.k works 252 * without fractional digits. strtod tries to treat 'e' as an 253 * exponent, but we want to treat it as a scaling suffix; 254 * doing this requires modifying a copy of the fraction. 255 */ 256 double fraction = 0.0; 257 258 if (retval == 0 && *endptr == '.' && !isdigit(endptr[1])) { 259 /* If we got here, we parsed at least one digit already. */ 260 endptr++; 261 } else { 262 char *e; 263 const char *tail; 264 g_autofree char *copy = g_strdup(endptr); 265 266 e = strchr(copy, 'e'); 267 if (e) { 268 *e = '\0'; 269 } 270 e = strchr(copy, 'E'); 271 if (e) { 272 *e = '\0'; 273 } 274 /* 275 * If this is a floating point, we are guaranteed that '.' 276 * appears before any possible digits in copy. If it is 277 * not a floating point, strtod will fail. Either way, 278 * there is now no exponent in copy, so if it parses, we 279 * know 0.0 <= abs(result) <= 1.0 (after rounding), and 280 * ERANGE is only possible on underflow which is okay. 281 */ 282 retval = qemu_strtod_finite(copy, &tail, &fraction); 283 endptr += tail - copy; 284 if (signbit(fraction)) { 285 retval = -ERANGE; 286 goto out; 287 } 288 } 289 290 /* Extract into a 64-bit fixed-point fraction. */ 291 if (fraction == 1.0) { 292 if (val == UINT64_MAX) { 293 retval = -ERANGE; 294 goto out; 295 } 296 val++; 297 } else if (retval == -ERANGE) { 298 /* See comments above about underflow */ 299 valf = 1; 300 retval = 0; 301 } else { 302 /* We want non-zero valf for any non-zero fraction */ 303 valf = (uint64_t)(fraction * 0x1p64); 304 if (valf == 0 && fraction > 0.0) { 305 valf = 1; 306 } 307 } 308 } 309 if (retval) { 310 goto out; 311 } 312 c = *endptr; 313 mul = suffix_mul(c, unit); 314 if (mul > 0) { 315 endptr++; 316 } else { 317 mul = suffix_mul(default_suffix, unit); 318 assert(mul > 0); 319 } 320 if (mul == 1) { 321 /* When a fraction is present, a scale is required. */ 322 if (valf != 0) { 323 endptr = nptr; 324 retval = -EINVAL; 325 goto out; 326 } 327 } else { 328 uint64_t valh, tmp; 329 330 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ 331 mulu64(&val, &valh, val, mul); 332 mulu64(&valf, &tmp, valf, mul); 333 val += tmp; 334 valh += val < tmp; 335 336 /* Round 0.5 upward. */ 337 tmp = valf >> 63; 338 val += tmp; 339 valh += val < tmp; 340 341 /* Report overflow. */ 342 if (valh != 0) { 343 retval = -ERANGE; 344 goto out; 345 } 346 } 347 348 retval = 0; 349 350 out: 351 if (end) { 352 *end = endptr; 353 } else if (nptr && *endptr) { 354 retval = -EINVAL; 355 } 356 if (retval == 0) { 357 *result = val; 358 } else { 359 *result = 0; 360 if (end && retval == -EINVAL) { 361 *end = nptr; 362 } 363 } 364 365 return retval; 366 } 367 368 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) 369 { 370 return do_strtosz(nptr, end, 'B', 1024, result); 371 } 372 373 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) 374 { 375 return do_strtosz(nptr, end, 'M', 1024, result); 376 } 377 378 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) 379 { 380 return do_strtosz(nptr, end, 'B', 1000, result); 381 } 382 383 /** 384 * Helper function for error checking after strtol() and the like 385 */ 386 static int check_strtox_error(const char *nptr, char *ep, 387 const char **endptr, bool check_zero, 388 int libc_errno) 389 { 390 assert(ep >= nptr); 391 392 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ 393 if (check_zero && ep == nptr && libc_errno == 0) { 394 char *tmp; 395 396 errno = 0; 397 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && 398 (*tmp == 'x' || *tmp == 'X')) { 399 ep = tmp; 400 } 401 } 402 403 if (endptr) { 404 *endptr = ep; 405 } 406 407 /* Turn "no conversion" into an error */ 408 if (libc_errno == 0 && ep == nptr) { 409 return -EINVAL; 410 } 411 412 /* Fail when we're expected to consume the string, but didn't */ 413 if (!endptr && *ep) { 414 return -EINVAL; 415 } 416 417 return -libc_errno; 418 } 419 420 /** 421 * Convert string @nptr to an integer, and store it in @result. 422 * 423 * This is a wrapper around strtol() that is harder to misuse. 424 * Semantics of @nptr, @endptr, @base match strtol() with differences 425 * noted below. 426 * 427 * @nptr may be null, and no conversion is performed then. 428 * 429 * If no conversion is performed, store @nptr in *@endptr, 0 in 430 * @result, and return -EINVAL. 431 * 432 * If @endptr is null, and the string isn't fully converted, return 433 * -EINVAL with @result set to the parsed value. This is the case 434 * when the pointer that would be stored in a non-null @endptr points 435 * to a character other than '\0'. 436 * 437 * If the conversion overflows @result, store INT_MAX in @result, 438 * and return -ERANGE. 439 * 440 * If the conversion underflows @result, store INT_MIN in @result, 441 * and return -ERANGE. 442 * 443 * Else store the converted value in @result, and return zero. 444 * 445 * This matches the behavior of strtol() on 32-bit platforms, even on 446 * platforms where long is 64-bits. 447 */ 448 int qemu_strtoi(const char *nptr, const char **endptr, int base, 449 int *result) 450 { 451 char *ep; 452 long long lresult; 453 454 assert((unsigned) base <= 36 && base != 1); 455 if (!nptr) { 456 *result = 0; 457 if (endptr) { 458 *endptr = nptr; 459 } 460 return -EINVAL; 461 } 462 463 errno = 0; 464 lresult = strtoll(nptr, &ep, base); 465 if (lresult < INT_MIN) { 466 *result = INT_MIN; 467 errno = ERANGE; 468 } else if (lresult > INT_MAX) { 469 *result = INT_MAX; 470 errno = ERANGE; 471 } else { 472 *result = lresult; 473 } 474 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 475 } 476 477 /** 478 * Convert string @nptr to an unsigned integer, and store it in @result. 479 * 480 * This is a wrapper around strtoul() that is harder to misuse. 481 * Semantics of @nptr, @endptr, @base match strtoul() with differences 482 * noted below. 483 * 484 * @nptr may be null, and no conversion is performed then. 485 * 486 * If no conversion is performed, store @nptr in *@endptr, 0 in 487 * @result, and return -EINVAL. 488 * 489 * If @endptr is null, and the string isn't fully converted, return 490 * -EINVAL with @result set to the parsed value. This is the case 491 * when the pointer that would be stored in a non-null @endptr points 492 * to a character other than '\0'. 493 * 494 * If the conversion overflows @result, store UINT_MAX in @result, 495 * and return -ERANGE. 496 * 497 * Else store the converted value in @result, and return zero. 498 * 499 * Note that a number with a leading minus sign gets converted without 500 * the minus sign, checked for overflow (see above), then negated (in 501 * @result's type). This matches the behavior of strtoul() on 32-bit 502 * platforms, even on platforms where long is 64-bits. 503 */ 504 int qemu_strtoui(const char *nptr, const char **endptr, int base, 505 unsigned int *result) 506 { 507 char *ep; 508 unsigned long long lresult; 509 bool neg; 510 511 assert((unsigned) base <= 36 && base != 1); 512 if (!nptr) { 513 *result = 0; 514 if (endptr) { 515 *endptr = nptr; 516 } 517 return -EINVAL; 518 } 519 520 errno = 0; 521 lresult = strtoull(nptr, &ep, base); 522 523 /* Windows returns 1 for negative out-of-range values. */ 524 if (errno == ERANGE) { 525 *result = -1; 526 } else { 527 /* 528 * Note that platforms with 32-bit strtoul only accept input 529 * in the range [-4294967295, 4294967295]; but we used 64-bit 530 * strtoull which wraps -18446744073709551615 to 1 instead of 531 * declaring overflow. So we must check if '-' was parsed, 532 * and if so, undo the negation before doing our bounds check. 533 */ 534 neg = memchr(nptr, '-', ep - nptr) != NULL; 535 if (neg) { 536 lresult = -lresult; 537 } 538 if (lresult > UINT_MAX) { 539 *result = UINT_MAX; 540 errno = ERANGE; 541 } else { 542 *result = neg ? -lresult : lresult; 543 } 544 } 545 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); 546 } 547 548 /** 549 * Convert string @nptr to a long integer, and store it in @result. 550 * 551 * This is a wrapper around strtol() that is harder to misuse. 552 * Semantics of @nptr, @endptr, @base match strtol() with differences 553 * noted below. 554 * 555 * @nptr may be null, and no conversion is performed then. 556 * 557 * If no conversion is performed, store @nptr in *@endptr, 0 in 558 * @result, and return -EINVAL. 559 * 560 * If @endptr is null, and the string isn't fully converted, return 561 * -EINVAL with @result set to the parsed value. This is the case 562 * when the pointer that would be stored in a non-null @endptr points 563 * to a character other than '\0'. 564 * 565 * If the conversion overflows @result, store LONG_MAX in @result, 566 * and return -ERANGE. 567 * 568 * If the conversion underflows @result, store LONG_MIN in @result, 569 * and return -ERANGE. 570 * 571 * Else store the converted value in @result, and return zero. 572 */ 573 int qemu_strtol(const char *nptr, const char **endptr, int base, 574 long *result) 575 { 576 char *ep; 577 578 assert((unsigned) base <= 36 && base != 1); 579 if (!nptr) { 580 *result = 0; 581 if (endptr) { 582 *endptr = nptr; 583 } 584 return -EINVAL; 585 } 586 587 errno = 0; 588 *result = strtol(nptr, &ep, base); 589 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 590 } 591 592 /** 593 * Convert string @nptr to an unsigned long, and store it in @result. 594 * 595 * This is a wrapper around strtoul() that is harder to misuse. 596 * Semantics of @nptr, @endptr, @base match strtoul() with differences 597 * noted below. 598 * 599 * @nptr may be null, and no conversion is performed then. 600 * 601 * If no conversion is performed, store @nptr in *@endptr, 0 in 602 * @result, and return -EINVAL. 603 * 604 * If @endptr is null, and the string isn't fully converted, return 605 * -EINVAL with @result set to the parsed value. This is the case 606 * when the pointer that would be stored in a non-null @endptr points 607 * to a character other than '\0'. 608 * 609 * If the conversion overflows @result, store ULONG_MAX in @result, 610 * and return -ERANGE. 611 * 612 * Else store the converted value in @result, and return zero. 613 * 614 * Note that a number with a leading minus sign gets converted without 615 * the minus sign, checked for overflow (see above), then negated (in 616 * @result's type). This is exactly how strtoul() works. 617 */ 618 int qemu_strtoul(const char *nptr, const char **endptr, int base, 619 unsigned long *result) 620 { 621 char *ep; 622 623 assert((unsigned) base <= 36 && base != 1); 624 if (!nptr) { 625 *result = 0; 626 if (endptr) { 627 *endptr = nptr; 628 } 629 return -EINVAL; 630 } 631 632 errno = 0; 633 *result = strtoul(nptr, &ep, base); 634 /* Windows returns 1 for negative out-of-range values. */ 635 if (errno == ERANGE) { 636 *result = -1; 637 } 638 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 639 } 640 641 /** 642 * Convert string @nptr to an int64_t. 643 * 644 * Works like qemu_strtol(), except it stores INT64_MAX on overflow, 645 * and INT64_MIN on underflow. 646 */ 647 int qemu_strtoi64(const char *nptr, const char **endptr, int base, 648 int64_t *result) 649 { 650 char *ep; 651 652 assert((unsigned) base <= 36 && base != 1); 653 if (!nptr) { 654 *result = 0; 655 if (endptr) { 656 *endptr = nptr; 657 } 658 return -EINVAL; 659 } 660 661 /* This assumes int64_t is long long TODO relax */ 662 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); 663 errno = 0; 664 *result = strtoll(nptr, &ep, base); 665 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 666 } 667 668 /** 669 * Convert string @nptr to an uint64_t. 670 * 671 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. 672 * (If you want to prohibit negative numbers that wrap around to 673 * positive, use parse_uint()). 674 */ 675 int qemu_strtou64(const char *nptr, const char **endptr, int base, 676 uint64_t *result) 677 { 678 char *ep; 679 680 assert((unsigned) base <= 36 && base != 1); 681 if (!nptr) { 682 *result = 0; 683 if (endptr) { 684 *endptr = nptr; 685 } 686 return -EINVAL; 687 } 688 689 /* This assumes uint64_t is unsigned long long TODO relax */ 690 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); 691 errno = 0; 692 *result = strtoull(nptr, &ep, base); 693 /* Windows returns 1 for negative out-of-range values. */ 694 if (errno == ERANGE) { 695 *result = -1; 696 } 697 return check_strtox_error(nptr, ep, endptr, *result == 0, errno); 698 } 699 700 /** 701 * Convert string @nptr to a double. 702 * 703 * This is a wrapper around strtod() that is harder to misuse. 704 * Semantics of @nptr and @endptr match strtod() with differences 705 * noted below. 706 * 707 * @nptr may be null, and no conversion is performed then. 708 * 709 * If no conversion is performed, store @nptr in *@endptr, +0.0 in 710 * @result, and return -EINVAL. 711 * 712 * If @endptr is null, and the string isn't fully converted, return 713 * -EINVAL with @result set to the parsed value. This is the case 714 * when the pointer that would be stored in a non-null @endptr points 715 * to a character other than '\0'. 716 * 717 * If the conversion overflows, store +/-HUGE_VAL in @result, depending 718 * on the sign, and return -ERANGE. 719 * 720 * If the conversion underflows, store +/-0.0 in @result, depending on the 721 * sign, and return -ERANGE. 722 * 723 * Else store the converted value in @result, and return zero. 724 */ 725 int qemu_strtod(const char *nptr, const char **endptr, double *result) 726 { 727 char *ep; 728 729 if (!nptr) { 730 *result = 0.0; 731 if (endptr) { 732 *endptr = nptr; 733 } 734 return -EINVAL; 735 } 736 737 errno = 0; 738 *result = strtod(nptr, &ep); 739 return check_strtox_error(nptr, ep, endptr, false, errno); 740 } 741 742 /** 743 * Convert string @nptr to a finite double. 744 * 745 * Works like qemu_strtod(), except that "NaN", "inf", and strings 746 * that cause ERANGE overflow errors are rejected with -EINVAL as if 747 * no conversion is performed, storing 0.0 into @result regardless of 748 * any sign. -ERANGE failures for underflow still preserve the parsed 749 * sign. 750 */ 751 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) 752 { 753 const char *tmp; 754 int ret; 755 756 ret = qemu_strtod(nptr, &tmp, result); 757 if (!isfinite(*result)) { 758 if (endptr) { 759 *endptr = nptr; 760 } 761 *result = 0.0; 762 ret = -EINVAL; 763 } else if (endptr) { 764 *endptr = tmp; 765 } else if (*tmp) { 766 ret = -EINVAL; 767 } 768 return ret; 769 } 770 771 /** 772 * Searches for the first occurrence of 'c' in 's', and returns a pointer 773 * to the trailing null byte if none was found. 774 */ 775 #ifndef HAVE_STRCHRNUL 776 const char *qemu_strchrnul(const char *s, int c) 777 { 778 const char *e = strchr(s, c); 779 if (!e) { 780 e = s + strlen(s); 781 } 782 return e; 783 } 784 #endif 785 786 /** 787 * parse_uint: 788 * 789 * @s: String to parse 790 * @endptr: Destination for pointer to first character not consumed 791 * @base: integer base, between 2 and 36 inclusive, or 0 792 * @value: Destination for parsed integer value 793 * 794 * Parse unsigned integer 795 * 796 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional 797 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. 798 * 799 * If @s is null, or @s doesn't start with an integer in the syntax 800 * above, set *@value to 0, *@endptr to @s, and return -EINVAL. 801 * 802 * Set *@endptr to point right beyond the parsed integer (even if the integer 803 * overflows or is negative, all digits will be parsed and *@endptr will 804 * point right beyond them). If @endptr is %NULL, any trailing character 805 * instead causes a result of -EINVAL with *@value of 0. 806 * 807 * If the integer is negative, set *@value to 0, and return -ERANGE. 808 * (If you want to allow negative numbers that wrap around within 809 * bounds, use qemu_strtou64()). 810 * 811 * If the integer overflows unsigned long long, set *@value to 812 * ULLONG_MAX, and return -ERANGE. 813 * 814 * Else, set *@value to the parsed integer, and return 0. 815 */ 816 int parse_uint(const char *s, const char **endptr, int base, uint64_t *value) 817 { 818 int r = 0; 819 char *endp = (char *)s; 820 unsigned long long val = 0; 821 822 assert((unsigned) base <= 36 && base != 1); 823 if (!s) { 824 r = -EINVAL; 825 goto out; 826 } 827 828 errno = 0; 829 val = strtoull(s, &endp, base); 830 if (errno) { 831 r = -errno; 832 goto out; 833 } 834 835 if (endp == s) { 836 r = -EINVAL; 837 goto out; 838 } 839 840 /* make sure we reject negative numbers: */ 841 while (qemu_isspace(*s)) { 842 s++; 843 } 844 if (*s == '-') { 845 val = 0; 846 r = -ERANGE; 847 goto out; 848 } 849 850 out: 851 *value = val; 852 if (endptr) { 853 *endptr = endp; 854 } else if (s && *endp) { 855 r = -EINVAL; 856 *value = 0; 857 } 858 return r; 859 } 860 861 /** 862 * parse_uint_full: 863 * 864 * @s: String to parse 865 * @base: integer base, between 2 and 36 inclusive, or 0 866 * @value: Destination for parsed integer value 867 * 868 * Parse unsigned integer from entire string, rejecting any trailing slop. 869 * 870 * Shorthand for parse_uint(s, NULL, base, value). 871 */ 872 int parse_uint_full(const char *s, int base, uint64_t *value) 873 { 874 return parse_uint(s, NULL, base, value); 875 } 876 877 int qemu_parse_fd(const char *param) 878 { 879 long fd; 880 char *endptr; 881 882 errno = 0; 883 fd = strtol(param, &endptr, 10); 884 if (param == endptr /* no conversion performed */ || 885 errno != 0 /* not representable as long; possibly others */ || 886 *endptr != '\0' /* final string not empty */ || 887 fd < 0 /* invalid as file descriptor */ || 888 fd > INT_MAX /* not representable as int */) { 889 return -1; 890 } 891 return fd; 892 } 893 894 /* 895 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) 896 * Input is limited to 14-bit numbers 897 */ 898 int uleb128_encode_small(uint8_t *out, uint32_t n) 899 { 900 g_assert(n <= 0x3fff); 901 if (n < 0x80) { 902 *out = n; 903 return 1; 904 } else { 905 *out++ = (n & 0x7f) | 0x80; 906 *out = n >> 7; 907 return 2; 908 } 909 } 910 911 int uleb128_decode_small(const uint8_t *in, uint32_t *n) 912 { 913 if (!(*in & 0x80)) { 914 *n = *in; 915 return 1; 916 } else { 917 *n = *in++ & 0x7f; 918 /* we exceed 14 bit number */ 919 if (*in & 0x80) { 920 return -1; 921 } 922 *n |= *in << 7; 923 return 2; 924 } 925 } 926 927 /* 928 * helper to parse debug environment variables 929 */ 930 int parse_debug_env(const char *name, int max, int initial) 931 { 932 char *debug_env = getenv(name); 933 char *inv = NULL; 934 long debug; 935 936 if (!debug_env) { 937 return initial; 938 } 939 errno = 0; 940 debug = strtol(debug_env, &inv, 10); 941 if (inv == debug_env) { 942 return initial; 943 } 944 if (debug < 0 || debug > max || errno != 0) { 945 warn_report("%s not in [0, %d]", name, max); 946 return initial; 947 } 948 return debug; 949 } 950 951 const char *si_prefix(unsigned int exp10) 952 { 953 static const char *prefixes[] = { 954 "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E" 955 }; 956 957 exp10 += 18; 958 assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes)); 959 return prefixes[exp10 / 3]; 960 } 961 962 const char *iec_binary_prefix(unsigned int exp2) 963 { 964 static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; 965 966 assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes)); 967 return prefixes[exp2 / 10]; 968 } 969 970 /* 971 * Return human readable string for size @val. 972 * @val can be anything that uint64_t allows (no more than "16 EiB"). 973 * Use IEC binary units like KiB, MiB, and so forth. 974 * Caller is responsible for passing it to g_free(). 975 */ 976 char *size_to_str(uint64_t val) 977 { 978 uint64_t div; 979 int i; 980 981 /* 982 * The exponent (returned in i) minus one gives us 983 * floor(log2(val * 1024 / 1000). The correction makes us 984 * switch to the higher power when the integer part is >= 1000. 985 * (see e41b509d68afb1f for more info) 986 */ 987 frexp(val / (1000.0 / 1024.0), &i); 988 i = (i - 1) / 10 * 10; 989 div = 1ULL << i; 990 991 return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i)); 992 } 993 994 char *freq_to_str(uint64_t freq_hz) 995 { 996 double freq = freq_hz; 997 size_t exp10 = 0; 998 999 while (freq >= 1000.0) { 1000 freq /= 1000.0; 1001 exp10 += 3; 1002 } 1003 1004 return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10)); 1005 } 1006 1007 int qemu_pstrcmp0(const char **str1, const char **str2) 1008 { 1009 return g_strcmp0(*str1, *str2); 1010 } 1011 1012 static inline bool starts_with_prefix(const char *dir) 1013 { 1014 size_t prefix_len = strlen(CONFIG_PREFIX); 1015 /* 1016 * dir[prefix_len] is only accessed if the length of dir is 1017 * >= prefix_len, so no out of bounds access is possible. 1018 */ 1019 #pragma GCC diagnostic push 1020 #if !defined(__clang__) || __has_warning("-Warray-bounds=") 1021 #pragma GCC diagnostic ignored "-Warray-bounds=" 1022 #endif 1023 return !memcmp(dir, CONFIG_PREFIX, prefix_len) && 1024 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); 1025 #pragma GCC diagnostic pop 1026 } 1027 1028 /* Return the next path component in dir, and store its length in *p_len. */ 1029 static inline const char *next_component(const char *dir, int *p_len) 1030 { 1031 int len; 1032 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || 1033 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { 1034 dir++; 1035 } 1036 len = 0; 1037 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { 1038 len++; 1039 } 1040 *p_len = len; 1041 return dir; 1042 } 1043 1044 static const char *exec_dir; 1045 1046 void qemu_init_exec_dir(const char *argv0) 1047 { 1048 #ifdef G_OS_WIN32 1049 char *p; 1050 char buf[MAX_PATH]; 1051 DWORD len; 1052 1053 if (exec_dir) { 1054 return; 1055 } 1056 1057 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); 1058 if (len == 0) { 1059 return; 1060 } 1061 1062 buf[len] = 0; 1063 p = buf + len - 1; 1064 while (p != buf && *p != '\\') { 1065 p--; 1066 } 1067 *p = 0; 1068 if (access(buf, R_OK) == 0) { 1069 exec_dir = g_strdup(buf); 1070 } else { 1071 exec_dir = CONFIG_BINDIR; 1072 } 1073 #else 1074 char *p = NULL; 1075 char buf[PATH_MAX]; 1076 1077 if (exec_dir) { 1078 return; 1079 } 1080 1081 #if defined(__linux__) 1082 { 1083 int len; 1084 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); 1085 if (len > 0) { 1086 buf[len] = 0; 1087 p = buf; 1088 } 1089 } 1090 #elif defined(__FreeBSD__) \ 1091 || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME)) 1092 { 1093 #if defined(__FreeBSD__) 1094 static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; 1095 #else 1096 static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; 1097 #endif 1098 size_t len = sizeof(buf) - 1; 1099 1100 *buf = '\0'; 1101 if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) && 1102 *buf) { 1103 buf[sizeof(buf) - 1] = '\0'; 1104 p = buf; 1105 } 1106 } 1107 #elif defined(__APPLE__) 1108 { 1109 char fpath[PATH_MAX]; 1110 uint32_t len = sizeof(fpath); 1111 if (_NSGetExecutablePath(fpath, &len) == 0) { 1112 p = realpath(fpath, buf); 1113 if (!p) { 1114 return; 1115 } 1116 } 1117 } 1118 #elif defined(__HAIKU__) 1119 { 1120 image_info ii; 1121 int32_t c = 0; 1122 1123 *buf = '\0'; 1124 while (get_next_image_info(0, &c, &ii) == B_OK) { 1125 if (ii.type == B_APP_IMAGE) { 1126 strncpy(buf, ii.name, sizeof(buf)); 1127 buf[sizeof(buf) - 1] = 0; 1128 p = buf; 1129 break; 1130 } 1131 } 1132 } 1133 #endif 1134 /* If we don't have any way of figuring out the actual executable 1135 location then try argv[0]. */ 1136 if (!p && argv0) { 1137 p = realpath(argv0, buf); 1138 } 1139 if (p) { 1140 exec_dir = g_path_get_dirname(p); 1141 } else { 1142 exec_dir = CONFIG_BINDIR; 1143 } 1144 #endif 1145 } 1146 1147 const char *qemu_get_exec_dir(void) 1148 { 1149 return exec_dir; 1150 } 1151 1152 char *get_relocated_path(const char *dir) 1153 { 1154 size_t prefix_len = strlen(CONFIG_PREFIX); 1155 const char *bindir = CONFIG_BINDIR; 1156 GString *result; 1157 int len_dir, len_bindir; 1158 1159 /* Fail if qemu_init_exec_dir was not called. */ 1160 assert(exec_dir[0]); 1161 1162 result = g_string_new(exec_dir); 1163 g_string_append(result, "/qemu-bundle"); 1164 if (access(result->str, R_OK) == 0) { 1165 #ifdef G_OS_WIN32 1166 const char *src = dir; 1167 size_t size = mbsrtowcs(NULL, &src, 0, &(mbstate_t){0}) + 1; 1168 PWSTR wdir = g_new(WCHAR, size); 1169 mbsrtowcs(wdir, &src, size, &(mbstate_t){0}); 1170 1171 PCWSTR wdir_skipped_root; 1172 if (PathCchSkipRoot(wdir, &wdir_skipped_root) == S_OK) { 1173 size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0}); 1174 char *cursor = result->str + result->len; 1175 g_string_set_size(result, result->len + size); 1176 wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0}); 1177 } else { 1178 g_string_append(result, dir); 1179 } 1180 1181 g_free(wdir); 1182 #else 1183 g_string_append(result, dir); 1184 #endif 1185 goto out; 1186 } 1187 1188 if (IS_ENABLED(CONFIG_RELOCATABLE) && 1189 starts_with_prefix(dir) && starts_with_prefix(bindir)) { 1190 g_string_assign(result, exec_dir); 1191 1192 /* Advance over common components. */ 1193 len_dir = len_bindir = prefix_len; 1194 do { 1195 dir += len_dir; 1196 bindir += len_bindir; 1197 dir = next_component(dir, &len_dir); 1198 bindir = next_component(bindir, &len_bindir); 1199 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); 1200 1201 /* Ascend from bindir to the common prefix with dir. */ 1202 while (len_bindir) { 1203 bindir += len_bindir; 1204 g_string_append(result, "/.."); 1205 bindir = next_component(bindir, &len_bindir); 1206 } 1207 1208 if (*dir) { 1209 assert(G_IS_DIR_SEPARATOR(dir[-1])); 1210 g_string_append(result, dir - 1); 1211 } 1212 goto out; 1213 } 1214 1215 g_string_assign(result, dir); 1216 out: 1217 return g_string_free(result, false); 1218 } 1219