xref: /openbmc/qemu/util/cutils.c (revision 068cc51d)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28 
29 #ifdef __FreeBSD__
30 #include <sys/sysctl.h>
31 #include <sys/user.h>
32 #endif
33 
34 #ifdef __NetBSD__
35 #include <sys/sysctl.h>
36 #endif
37 
38 #include "qemu/ctype.h"
39 #include "qemu/cutils.h"
40 #include "qemu/error-report.h"
41 
42 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
43 {
44     int len = qemu_strnlen(str, buf_size);
45     memcpy(buf, str, len);
46     memset(buf + len, pad, buf_size - len);
47 }
48 
49 void pstrcpy(char *buf, int buf_size, const char *str)
50 {
51     int c;
52     char *q = buf;
53 
54     if (buf_size <= 0)
55         return;
56 
57     for(;;) {
58         c = *str++;
59         if (c == 0 || q >= buf + buf_size - 1)
60             break;
61         *q++ = c;
62     }
63     *q = '\0';
64 }
65 
66 /* strcat and truncate. */
67 char *pstrcat(char *buf, int buf_size, const char *s)
68 {
69     int len;
70     len = strlen(buf);
71     if (len < buf_size)
72         pstrcpy(buf + len, buf_size - len, s);
73     return buf;
74 }
75 
76 int strstart(const char *str, const char *val, const char **ptr)
77 {
78     const char *p, *q;
79     p = str;
80     q = val;
81     while (*q != '\0') {
82         if (*p != *q)
83             return 0;
84         p++;
85         q++;
86     }
87     if (ptr)
88         *ptr = p;
89     return 1;
90 }
91 
92 int stristart(const char *str, const char *val, const char **ptr)
93 {
94     const char *p, *q;
95     p = str;
96     q = val;
97     while (*q != '\0') {
98         if (qemu_toupper(*p) != qemu_toupper(*q))
99             return 0;
100         p++;
101         q++;
102     }
103     if (ptr)
104         *ptr = p;
105     return 1;
106 }
107 
108 /* XXX: use host strnlen if available ? */
109 int qemu_strnlen(const char *s, int max_len)
110 {
111     int i;
112 
113     for(i = 0; i < max_len; i++) {
114         if (s[i] == '\0') {
115             break;
116         }
117     }
118     return i;
119 }
120 
121 char *qemu_strsep(char **input, const char *delim)
122 {
123     char *result = *input;
124     if (result != NULL) {
125         char *p;
126 
127         for (p = result; *p != '\0'; p++) {
128             if (strchr(delim, *p)) {
129                 break;
130             }
131         }
132         if (*p == '\0') {
133             *input = NULL;
134         } else {
135             *p = '\0';
136             *input = p + 1;
137         }
138     }
139     return result;
140 }
141 
142 time_t mktimegm(struct tm *tm)
143 {
144     time_t t;
145     int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
146     if (m < 3) {
147         m += 12;
148         y--;
149     }
150     t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
151                  y / 400 - 719469);
152     t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
153     return t;
154 }
155 
156 static int64_t suffix_mul(char suffix, int64_t unit)
157 {
158     switch (qemu_toupper(suffix)) {
159     case 'B':
160         return 1;
161     case 'K':
162         return unit;
163     case 'M':
164         return unit * unit;
165     case 'G':
166         return unit * unit * unit;
167     case 'T':
168         return unit * unit * unit * unit;
169     case 'P':
170         return unit * unit * unit * unit * unit;
171     case 'E':
172         return unit * unit * unit * unit * unit * unit;
173     }
174     return -1;
175 }
176 
177 /*
178  * Convert size string to bytes.
179  *
180  * The size parsing supports the following syntaxes
181  * - 12345 - decimal, scale determined by @default_suffix and @unit
182  * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
183  * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
184  *   fractional portion is truncated to byte
185  * - 0x7fEE - hexadecimal, unit determined by @default_suffix
186  *
187  * The following cause a deprecation warning, and may be removed in the future
188  * - 0xabc{kKmMgGtTpP} - hex with scaling suffix
189  *
190  * The following are intentionally not supported
191  * - octal, such as 08
192  * - fractional hex, such as 0x1.8
193  * - floating point exponents, such as 1e3
194  *
195  * The end pointer will be returned in *end, if not NULL.  If there is
196  * no fraction, the input can be decimal or hexadecimal; if there is a
197  * fraction, then the input must be decimal and there must be a suffix
198  * (possibly by @default_suffix) larger than Byte, and the fractional
199  * portion may suffer from precision loss or rounding.  The input must
200  * be positive.
201  *
202  * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
203  * other error (with *@end left unchanged).
204  */
205 static int do_strtosz(const char *nptr, const char **end,
206                       const char default_suffix, int64_t unit,
207                       uint64_t *result)
208 {
209     int retval;
210     const char *endptr, *f;
211     unsigned char c;
212     bool hex = false;
213     uint64_t val, valf = 0;
214     int64_t mul;
215 
216     /* Parse integral portion as decimal. */
217     retval = qemu_strtou64(nptr, &endptr, 10, &val);
218     if (retval) {
219         goto out;
220     }
221     if (memchr(nptr, '-', endptr - nptr) != NULL) {
222         endptr = nptr;
223         retval = -EINVAL;
224         goto out;
225     }
226     if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
227         /* Input looks like hex, reparse, and insist on no fraction. */
228         retval = qemu_strtou64(nptr, &endptr, 16, &val);
229         if (retval) {
230             goto out;
231         }
232         if (*endptr == '.') {
233             endptr = nptr;
234             retval = -EINVAL;
235             goto out;
236         }
237         hex = true;
238     } else if (*endptr == '.') {
239         /*
240          * Input looks like a fraction.  Make sure even 1.k works
241          * without fractional digits.  If we see an exponent, treat
242          * the entire input as invalid instead.
243          */
244         double fraction;
245 
246         f = endptr;
247         retval = qemu_strtod_finite(f, &endptr, &fraction);
248         if (retval) {
249             endptr++;
250         } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
251             endptr = nptr;
252             retval = -EINVAL;
253             goto out;
254         } else {
255             /* Extract into a 64-bit fixed-point fraction. */
256             valf = (uint64_t)(fraction * 0x1p64);
257         }
258     }
259     c = *endptr;
260     mul = suffix_mul(c, unit);
261     if (mul > 0) {
262         if (hex) {
263             warn_report("Using a multiplier suffix on hex numbers "
264                         "is deprecated: %s", nptr);
265         }
266         endptr++;
267     } else {
268         mul = suffix_mul(default_suffix, unit);
269         assert(mul > 0);
270     }
271     if (mul == 1) {
272         /* When a fraction is present, a scale is required. */
273         if (valf != 0) {
274             endptr = nptr;
275             retval = -EINVAL;
276             goto out;
277         }
278     } else {
279         uint64_t valh, tmp;
280 
281         /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
282         mulu64(&val, &valh, val, mul);
283         mulu64(&valf, &tmp, valf, mul);
284         val += tmp;
285         valh += val < tmp;
286 
287         /* Round 0.5 upward. */
288         tmp = valf >> 63;
289         val += tmp;
290         valh += val < tmp;
291 
292         /* Report overflow. */
293         if (valh != 0) {
294             retval = -ERANGE;
295             goto out;
296         }
297     }
298 
299     retval = 0;
300 
301 out:
302     if (end) {
303         *end = endptr;
304     } else if (*endptr) {
305         retval = -EINVAL;
306     }
307     if (retval == 0) {
308         *result = val;
309     }
310 
311     return retval;
312 }
313 
314 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
315 {
316     return do_strtosz(nptr, end, 'B', 1024, result);
317 }
318 
319 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
320 {
321     return do_strtosz(nptr, end, 'M', 1024, result);
322 }
323 
324 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
325 {
326     return do_strtosz(nptr, end, 'B', 1000, result);
327 }
328 
329 /**
330  * Helper function for error checking after strtol() and the like
331  */
332 static int check_strtox_error(const char *nptr, char *ep,
333                               const char **endptr, bool check_zero,
334                               int libc_errno)
335 {
336     assert(ep >= nptr);
337 
338     /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
339     if (check_zero && ep == nptr && libc_errno == 0) {
340         char *tmp;
341 
342         errno = 0;
343         if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
344             (*tmp == 'x' || *tmp == 'X')) {
345             ep = tmp;
346         }
347     }
348 
349     if (endptr) {
350         *endptr = ep;
351     }
352 
353     /* Turn "no conversion" into an error */
354     if (libc_errno == 0 && ep == nptr) {
355         return -EINVAL;
356     }
357 
358     /* Fail when we're expected to consume the string, but didn't */
359     if (!endptr && *ep) {
360         return -EINVAL;
361     }
362 
363     return -libc_errno;
364 }
365 
366 /**
367  * Convert string @nptr to an integer, and store it in @result.
368  *
369  * This is a wrapper around strtol() that is harder to misuse.
370  * Semantics of @nptr, @endptr, @base match strtol() with differences
371  * noted below.
372  *
373  * @nptr may be null, and no conversion is performed then.
374  *
375  * If no conversion is performed, store @nptr in *@endptr and return
376  * -EINVAL.
377  *
378  * If @endptr is null, and the string isn't fully converted, return
379  * -EINVAL.  This is the case when the pointer that would be stored in
380  * a non-null @endptr points to a character other than '\0'.
381  *
382  * If the conversion overflows @result, store INT_MAX in @result,
383  * and return -ERANGE.
384  *
385  * If the conversion underflows @result, store INT_MIN in @result,
386  * and return -ERANGE.
387  *
388  * Else store the converted value in @result, and return zero.
389  */
390 int qemu_strtoi(const char *nptr, const char **endptr, int base,
391                 int *result)
392 {
393     char *ep;
394     long long lresult;
395 
396     assert((unsigned) base <= 36 && base != 1);
397     if (!nptr) {
398         if (endptr) {
399             *endptr = nptr;
400         }
401         return -EINVAL;
402     }
403 
404     errno = 0;
405     lresult = strtoll(nptr, &ep, base);
406     if (lresult < INT_MIN) {
407         *result = INT_MIN;
408         errno = ERANGE;
409     } else if (lresult > INT_MAX) {
410         *result = INT_MAX;
411         errno = ERANGE;
412     } else {
413         *result = lresult;
414     }
415     return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
416 }
417 
418 /**
419  * Convert string @nptr to an unsigned integer, and store it in @result.
420  *
421  * This is a wrapper around strtoul() that is harder to misuse.
422  * Semantics of @nptr, @endptr, @base match strtoul() with differences
423  * noted below.
424  *
425  * @nptr may be null, and no conversion is performed then.
426  *
427  * If no conversion is performed, store @nptr in *@endptr and return
428  * -EINVAL.
429  *
430  * If @endptr is null, and the string isn't fully converted, return
431  * -EINVAL.  This is the case when the pointer that would be stored in
432  * a non-null @endptr points to a character other than '\0'.
433  *
434  * If the conversion overflows @result, store UINT_MAX in @result,
435  * and return -ERANGE.
436  *
437  * Else store the converted value in @result, and return zero.
438  *
439  * Note that a number with a leading minus sign gets converted without
440  * the minus sign, checked for overflow (see above), then negated (in
441  * @result's type).  This is exactly how strtoul() works.
442  */
443 int qemu_strtoui(const char *nptr, const char **endptr, int base,
444                  unsigned int *result)
445 {
446     char *ep;
447     long long lresult;
448 
449     assert((unsigned) base <= 36 && base != 1);
450     if (!nptr) {
451         if (endptr) {
452             *endptr = nptr;
453         }
454         return -EINVAL;
455     }
456 
457     errno = 0;
458     lresult = strtoull(nptr, &ep, base);
459 
460     /* Windows returns 1 for negative out-of-range values.  */
461     if (errno == ERANGE) {
462         *result = -1;
463     } else {
464         if (lresult > UINT_MAX) {
465             *result = UINT_MAX;
466             errno = ERANGE;
467         } else if (lresult < INT_MIN) {
468             *result = UINT_MAX;
469             errno = ERANGE;
470         } else {
471             *result = lresult;
472         }
473     }
474     return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
475 }
476 
477 /**
478  * Convert string @nptr to a long integer, and store it in @result.
479  *
480  * This is a wrapper around strtol() that is harder to misuse.
481  * Semantics of @nptr, @endptr, @base match strtol() with differences
482  * noted below.
483  *
484  * @nptr may be null, and no conversion is performed then.
485  *
486  * If no conversion is performed, store @nptr in *@endptr and return
487  * -EINVAL.
488  *
489  * If @endptr is null, and the string isn't fully converted, return
490  * -EINVAL.  This is the case when the pointer that would be stored in
491  * a non-null @endptr points to a character other than '\0'.
492  *
493  * If the conversion overflows @result, store LONG_MAX in @result,
494  * and return -ERANGE.
495  *
496  * If the conversion underflows @result, store LONG_MIN in @result,
497  * and return -ERANGE.
498  *
499  * Else store the converted value in @result, and return zero.
500  */
501 int qemu_strtol(const char *nptr, const char **endptr, int base,
502                 long *result)
503 {
504     char *ep;
505 
506     assert((unsigned) base <= 36 && base != 1);
507     if (!nptr) {
508         if (endptr) {
509             *endptr = nptr;
510         }
511         return -EINVAL;
512     }
513 
514     errno = 0;
515     *result = strtol(nptr, &ep, base);
516     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
517 }
518 
519 /**
520  * Convert string @nptr to an unsigned long, and store it in @result.
521  *
522  * This is a wrapper around strtoul() that is harder to misuse.
523  * Semantics of @nptr, @endptr, @base match strtoul() with differences
524  * noted below.
525  *
526  * @nptr may be null, and no conversion is performed then.
527  *
528  * If no conversion is performed, store @nptr in *@endptr and return
529  * -EINVAL.
530  *
531  * If @endptr is null, and the string isn't fully converted, return
532  * -EINVAL.  This is the case when the pointer that would be stored in
533  * a non-null @endptr points to a character other than '\0'.
534  *
535  * If the conversion overflows @result, store ULONG_MAX in @result,
536  * and return -ERANGE.
537  *
538  * Else store the converted value in @result, and return zero.
539  *
540  * Note that a number with a leading minus sign gets converted without
541  * the minus sign, checked for overflow (see above), then negated (in
542  * @result's type).  This is exactly how strtoul() works.
543  */
544 int qemu_strtoul(const char *nptr, const char **endptr, int base,
545                  unsigned long *result)
546 {
547     char *ep;
548 
549     assert((unsigned) base <= 36 && base != 1);
550     if (!nptr) {
551         if (endptr) {
552             *endptr = nptr;
553         }
554         return -EINVAL;
555     }
556 
557     errno = 0;
558     *result = strtoul(nptr, &ep, base);
559     /* Windows returns 1 for negative out-of-range values.  */
560     if (errno == ERANGE) {
561         *result = -1;
562     }
563     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
564 }
565 
566 /**
567  * Convert string @nptr to an int64_t.
568  *
569  * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
570  * and INT64_MIN on underflow.
571  */
572 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
573                  int64_t *result)
574 {
575     char *ep;
576 
577     assert((unsigned) base <= 36 && base != 1);
578     if (!nptr) {
579         if (endptr) {
580             *endptr = nptr;
581         }
582         return -EINVAL;
583     }
584 
585     /* This assumes int64_t is long long TODO relax */
586     QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
587     errno = 0;
588     *result = strtoll(nptr, &ep, base);
589     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
590 }
591 
592 /**
593  * Convert string @nptr to an uint64_t.
594  *
595  * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
596  */
597 int qemu_strtou64(const char *nptr, const char **endptr, int base,
598                   uint64_t *result)
599 {
600     char *ep;
601 
602     assert((unsigned) base <= 36 && base != 1);
603     if (!nptr) {
604         if (endptr) {
605             *endptr = nptr;
606         }
607         return -EINVAL;
608     }
609 
610     /* This assumes uint64_t is unsigned long long TODO relax */
611     QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
612     errno = 0;
613     *result = strtoull(nptr, &ep, base);
614     /* Windows returns 1 for negative out-of-range values.  */
615     if (errno == ERANGE) {
616         *result = -1;
617     }
618     return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
619 }
620 
621 /**
622  * Convert string @nptr to a double.
623   *
624  * This is a wrapper around strtod() that is harder to misuse.
625  * Semantics of @nptr and @endptr match strtod() with differences
626  * noted below.
627  *
628  * @nptr may be null, and no conversion is performed then.
629  *
630  * If no conversion is performed, store @nptr in *@endptr and return
631  * -EINVAL.
632  *
633  * If @endptr is null, and the string isn't fully converted, return
634  * -EINVAL. This is the case when the pointer that would be stored in
635  * a non-null @endptr points to a character other than '\0'.
636  *
637  * If the conversion overflows, store +/-HUGE_VAL in @result, depending
638  * on the sign, and return -ERANGE.
639  *
640  * If the conversion underflows, store +/-0.0 in @result, depending on the
641  * sign, and return -ERANGE.
642  *
643  * Else store the converted value in @result, and return zero.
644  */
645 int qemu_strtod(const char *nptr, const char **endptr, double *result)
646 {
647     char *ep;
648 
649     if (!nptr) {
650         if (endptr) {
651             *endptr = nptr;
652         }
653         return -EINVAL;
654     }
655 
656     errno = 0;
657     *result = strtod(nptr, &ep);
658     return check_strtox_error(nptr, ep, endptr, false, errno);
659 }
660 
661 /**
662  * Convert string @nptr to a finite double.
663  *
664  * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
665  * with -EINVAL and no conversion is performed.
666  */
667 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
668 {
669     double tmp;
670     int ret;
671 
672     ret = qemu_strtod(nptr, endptr, &tmp);
673     if (!ret && !isfinite(tmp)) {
674         if (endptr) {
675             *endptr = nptr;
676         }
677         ret = -EINVAL;
678     }
679 
680     if (ret != -EINVAL) {
681         *result = tmp;
682     }
683     return ret;
684 }
685 
686 /**
687  * Searches for the first occurrence of 'c' in 's', and returns a pointer
688  * to the trailing null byte if none was found.
689  */
690 #ifndef HAVE_STRCHRNUL
691 const char *qemu_strchrnul(const char *s, int c)
692 {
693     const char *e = strchr(s, c);
694     if (!e) {
695         e = s + strlen(s);
696     }
697     return e;
698 }
699 #endif
700 
701 /**
702  * parse_uint:
703  *
704  * @s: String to parse
705  * @value: Destination for parsed integer value
706  * @endptr: Destination for pointer to first character not consumed
707  * @base: integer base, between 2 and 36 inclusive, or 0
708  *
709  * Parse unsigned integer
710  *
711  * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
712  * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
713  *
714  * If @s is null, or @base is invalid, or @s doesn't start with an
715  * integer in the syntax above, set *@value to 0, *@endptr to @s, and
716  * return -EINVAL.
717  *
718  * Set *@endptr to point right beyond the parsed integer (even if the integer
719  * overflows or is negative, all digits will be parsed and *@endptr will
720  * point right beyond them).
721  *
722  * If the integer is negative, set *@value to 0, and return -ERANGE.
723  *
724  * If the integer overflows unsigned long long, set *@value to
725  * ULLONG_MAX, and return -ERANGE.
726  *
727  * Else, set *@value to the parsed integer, and return 0.
728  */
729 int parse_uint(const char *s, unsigned long long *value, char **endptr,
730                int base)
731 {
732     int r = 0;
733     char *endp = (char *)s;
734     unsigned long long val = 0;
735 
736     assert((unsigned) base <= 36 && base != 1);
737     if (!s) {
738         r = -EINVAL;
739         goto out;
740     }
741 
742     errno = 0;
743     val = strtoull(s, &endp, base);
744     if (errno) {
745         r = -errno;
746         goto out;
747     }
748 
749     if (endp == s) {
750         r = -EINVAL;
751         goto out;
752     }
753 
754     /* make sure we reject negative numbers: */
755     while (qemu_isspace(*s)) {
756         s++;
757     }
758     if (*s == '-') {
759         val = 0;
760         r = -ERANGE;
761         goto out;
762     }
763 
764 out:
765     *value = val;
766     *endptr = endp;
767     return r;
768 }
769 
770 /**
771  * parse_uint_full:
772  *
773  * @s: String to parse
774  * @value: Destination for parsed integer value
775  * @base: integer base, between 2 and 36 inclusive, or 0
776  *
777  * Parse unsigned integer from entire string
778  *
779  * Have the same behavior of parse_uint(), but with an additional check
780  * for additional data after the parsed number. If extra characters are present
781  * after the parsed number, the function will return -EINVAL, and *@v will
782  * be set to 0.
783  */
784 int parse_uint_full(const char *s, unsigned long long *value, int base)
785 {
786     char *endp;
787     int r;
788 
789     r = parse_uint(s, value, &endp, base);
790     if (r < 0) {
791         return r;
792     }
793     if (*endp) {
794         *value = 0;
795         return -EINVAL;
796     }
797 
798     return 0;
799 }
800 
801 int qemu_parse_fd(const char *param)
802 {
803     long fd;
804     char *endptr;
805 
806     errno = 0;
807     fd = strtol(param, &endptr, 10);
808     if (param == endptr /* no conversion performed */                    ||
809         errno != 0      /* not representable as long; possibly others */ ||
810         *endptr != '\0' /* final string not empty */                     ||
811         fd < 0          /* invalid as file descriptor */                 ||
812         fd > INT_MAX    /* not representable as int */) {
813         return -1;
814     }
815     return fd;
816 }
817 
818 /*
819  * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
820  * Input is limited to 14-bit numbers
821  */
822 int uleb128_encode_small(uint8_t *out, uint32_t n)
823 {
824     g_assert(n <= 0x3fff);
825     if (n < 0x80) {
826         *out = n;
827         return 1;
828     } else {
829         *out++ = (n & 0x7f) | 0x80;
830         *out = n >> 7;
831         return 2;
832     }
833 }
834 
835 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
836 {
837     if (!(*in & 0x80)) {
838         *n = *in;
839         return 1;
840     } else {
841         *n = *in++ & 0x7f;
842         /* we exceed 14 bit number */
843         if (*in & 0x80) {
844             return -1;
845         }
846         *n |= *in << 7;
847         return 2;
848     }
849 }
850 
851 /*
852  * helper to parse debug environment variables
853  */
854 int parse_debug_env(const char *name, int max, int initial)
855 {
856     char *debug_env = getenv(name);
857     char *inv = NULL;
858     long debug;
859 
860     if (!debug_env) {
861         return initial;
862     }
863     errno = 0;
864     debug = strtol(debug_env, &inv, 10);
865     if (inv == debug_env) {
866         return initial;
867     }
868     if (debug < 0 || debug > max || errno != 0) {
869         warn_report("%s not in [0, %d]", name, max);
870         return initial;
871     }
872     return debug;
873 }
874 
875 const char *si_prefix(unsigned int exp10)
876 {
877     static const char *prefixes[] = {
878         "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E"
879     };
880 
881     exp10 += 18;
882     assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes));
883     return prefixes[exp10 / 3];
884 }
885 
886 const char *iec_binary_prefix(unsigned int exp2)
887 {
888     static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
889 
890     assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes));
891     return prefixes[exp2 / 10];
892 }
893 
894 /*
895  * Return human readable string for size @val.
896  * @val can be anything that uint64_t allows (no more than "16 EiB").
897  * Use IEC binary units like KiB, MiB, and so forth.
898  * Caller is responsible for passing it to g_free().
899  */
900 char *size_to_str(uint64_t val)
901 {
902     uint64_t div;
903     int i;
904 
905     /*
906      * The exponent (returned in i) minus one gives us
907      * floor(log2(val * 1024 / 1000).  The correction makes us
908      * switch to the higher power when the integer part is >= 1000.
909      * (see e41b509d68afb1f for more info)
910      */
911     frexp(val / (1000.0 / 1024.0), &i);
912     i = (i - 1) / 10 * 10;
913     div = 1ULL << i;
914 
915     return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i));
916 }
917 
918 char *freq_to_str(uint64_t freq_hz)
919 {
920     double freq = freq_hz;
921     size_t exp10 = 0;
922 
923     while (freq >= 1000.0) {
924         freq /= 1000.0;
925         exp10 += 3;
926     }
927 
928     return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10));
929 }
930 
931 int qemu_pstrcmp0(const char **str1, const char **str2)
932 {
933     return g_strcmp0(*str1, *str2);
934 }
935 
936 static inline bool starts_with_prefix(const char *dir)
937 {
938     size_t prefix_len = strlen(CONFIG_PREFIX);
939     return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
940         (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
941 }
942 
943 /* Return the next path component in dir, and store its length in *p_len.  */
944 static inline const char *next_component(const char *dir, int *p_len)
945 {
946     int len;
947     while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
948            (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
949         dir++;
950     }
951     len = 0;
952     while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
953         len++;
954     }
955     *p_len = len;
956     return dir;
957 }
958 
959 static const char *exec_dir;
960 
961 void qemu_init_exec_dir(const char *argv0)
962 {
963 #ifdef G_OS_WIN32
964     char *p;
965     char buf[MAX_PATH];
966     DWORD len;
967 
968     if (exec_dir) {
969         return;
970     }
971 
972     len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
973     if (len == 0) {
974         return;
975     }
976 
977     buf[len] = 0;
978     p = buf + len - 1;
979     while (p != buf && *p != '\\') {
980         p--;
981     }
982     *p = 0;
983     if (access(buf, R_OK) == 0) {
984         exec_dir = g_strdup(buf);
985     } else {
986         exec_dir = CONFIG_BINDIR;
987     }
988 #else
989     char *p = NULL;
990     char buf[PATH_MAX];
991 
992     if (exec_dir) {
993         return;
994     }
995 
996 #if defined(__linux__)
997     {
998         int len;
999         len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
1000         if (len > 0) {
1001             buf[len] = 0;
1002             p = buf;
1003         }
1004     }
1005 #elif defined(__FreeBSD__) \
1006       || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME))
1007     {
1008 #if defined(__FreeBSD__)
1009         static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1010 #else
1011         static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1012 #endif
1013         size_t len = sizeof(buf) - 1;
1014 
1015         *buf = '\0';
1016         if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) &&
1017             *buf) {
1018             buf[sizeof(buf) - 1] = '\0';
1019             p = buf;
1020         }
1021     }
1022 #elif defined(__APPLE__)
1023     {
1024         char fpath[PATH_MAX];
1025         uint32_t len = sizeof(fpath);
1026         if (_NSGetExecutablePath(fpath, &len) == 0) {
1027             p = realpath(fpath, buf);
1028             if (!p) {
1029                 return;
1030             }
1031         }
1032     }
1033 #elif defined(__HAIKU__)
1034     {
1035         image_info ii;
1036         int32_t c = 0;
1037 
1038         *buf = '\0';
1039         while (get_next_image_info(0, &c, &ii) == B_OK) {
1040             if (ii.type == B_APP_IMAGE) {
1041                 strncpy(buf, ii.name, sizeof(buf));
1042                 buf[sizeof(buf) - 1] = 0;
1043                 p = buf;
1044                 break;
1045             }
1046         }
1047     }
1048 #endif
1049     /* If we don't have any way of figuring out the actual executable
1050        location then try argv[0].  */
1051     if (!p && argv0) {
1052         p = realpath(argv0, buf);
1053     }
1054     if (p) {
1055         exec_dir = g_path_get_dirname(p);
1056     } else {
1057         exec_dir = CONFIG_BINDIR;
1058     }
1059 #endif
1060 }
1061 
1062 const char *qemu_get_exec_dir(void)
1063 {
1064     return exec_dir;
1065 }
1066 
1067 char *get_relocated_path(const char *dir)
1068 {
1069     size_t prefix_len = strlen(CONFIG_PREFIX);
1070     const char *bindir = CONFIG_BINDIR;
1071     const char *exec_dir = qemu_get_exec_dir();
1072     GString *result;
1073     int len_dir, len_bindir;
1074 
1075     /* Fail if qemu_init_exec_dir was not called.  */
1076     assert(exec_dir[0]);
1077     if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
1078         return g_strdup(dir);
1079     }
1080 
1081     result = g_string_new(exec_dir);
1082 
1083     /* Advance over common components.  */
1084     len_dir = len_bindir = prefix_len;
1085     do {
1086         dir += len_dir;
1087         bindir += len_bindir;
1088         dir = next_component(dir, &len_dir);
1089         bindir = next_component(bindir, &len_bindir);
1090     } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1091 
1092     /* Ascend from bindir to the common prefix with dir.  */
1093     while (len_bindir) {
1094         bindir += len_bindir;
1095         g_string_append(result, "/..");
1096         bindir = next_component(bindir, &len_bindir);
1097     }
1098 
1099     if (*dir) {
1100         assert(G_IS_DIR_SEPARATOR(dir[-1]));
1101         g_string_append(result, dir - 1);
1102     }
1103     return g_string_free(result, false);
1104 }
1105