1 /* 2 * sigaltstack coroutine initialization code 3 * 4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws> 5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com> 6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu> 7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads 8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com> 9 * 10 * This library is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU Lesser General Public 12 * License as published by the Free Software Foundation; either 13 * version 2.1 of the License, or (at your option) any later version. 14 * 15 * This library is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * Lesser General Public License for more details. 19 * 20 * You should have received a copy of the GNU Lesser General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */ 25 #ifdef _FORTIFY_SOURCE 26 #undef _FORTIFY_SOURCE 27 #endif 28 #include "qemu/osdep.h" 29 #include <pthread.h> 30 #include "qemu/coroutine_int.h" 31 32 #ifdef CONFIG_SAFESTACK 33 #error "SafeStack is not compatible with code run in alternate signal stacks" 34 #endif 35 36 typedef struct { 37 Coroutine base; 38 void *stack; 39 size_t stack_size; 40 sigjmp_buf env; 41 } CoroutineSigAltStack; 42 43 /** 44 * Per-thread coroutine bookkeeping 45 */ 46 typedef struct { 47 /** Currently executing coroutine */ 48 Coroutine *current; 49 50 /** The default coroutine */ 51 CoroutineSigAltStack leader; 52 53 /** Information for the signal handler (trampoline) */ 54 sigjmp_buf tr_reenter; 55 volatile sig_atomic_t tr_called; 56 void *tr_handler; 57 } CoroutineThreadState; 58 59 static pthread_key_t thread_state_key; 60 61 static CoroutineThreadState *coroutine_get_thread_state(void) 62 { 63 CoroutineThreadState *s = pthread_getspecific(thread_state_key); 64 65 if (!s) { 66 s = g_malloc0(sizeof(*s)); 67 s->current = &s->leader.base; 68 pthread_setspecific(thread_state_key, s); 69 } 70 return s; 71 } 72 73 static void qemu_coroutine_thread_cleanup(void *opaque) 74 { 75 CoroutineThreadState *s = opaque; 76 77 g_free(s); 78 } 79 80 static void __attribute__((constructor)) coroutine_init(void) 81 { 82 int ret; 83 84 ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup); 85 if (ret != 0) { 86 fprintf(stderr, "unable to create leader key: %s\n", strerror(errno)); 87 abort(); 88 } 89 } 90 91 /* "boot" function 92 * This is what starts the coroutine, is called from the trampoline 93 * (from the signal handler when it is not signal handling, read ahead 94 * for more information). 95 */ 96 static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co) 97 { 98 /* Initialize longjmp environment and switch back the caller */ 99 if (!sigsetjmp(self->env, 0)) { 100 siglongjmp(*(sigjmp_buf *)co->entry_arg, 1); 101 } 102 103 while (true) { 104 co->entry(co->entry_arg); 105 qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE); 106 } 107 } 108 109 /* 110 * This is used as the signal handler. This is called with the brand new stack 111 * (thanks to sigaltstack). We have to return, given that this is a signal 112 * handler and the sigmask and some other things are changed. 113 */ 114 static void coroutine_trampoline(int signal) 115 { 116 CoroutineSigAltStack *self; 117 Coroutine *co; 118 CoroutineThreadState *coTS; 119 120 /* Get the thread specific information */ 121 coTS = coroutine_get_thread_state(); 122 self = coTS->tr_handler; 123 coTS->tr_called = 1; 124 co = &self->base; 125 126 /* 127 * Here we have to do a bit of a ping pong between the caller, given that 128 * this is a signal handler and we have to do a return "soon". Then the 129 * caller can reestablish everything and do a siglongjmp here again. 130 */ 131 if (!sigsetjmp(coTS->tr_reenter, 0)) { 132 return; 133 } 134 135 /* 136 * Ok, the caller has siglongjmp'ed back to us, so now prepare 137 * us for the real machine state switching. We have to jump 138 * into another function here to get a new stack context for 139 * the auto variables (which have to be auto-variables 140 * because the start of the thread happens later). Else with 141 * PIC (i.e. Position Independent Code which is used when PTH 142 * is built as a shared library) most platforms would 143 * horrible core dump as experience showed. 144 */ 145 coroutine_bootstrap(self, co); 146 } 147 148 Coroutine *qemu_coroutine_new(void) 149 { 150 CoroutineSigAltStack *co; 151 CoroutineThreadState *coTS; 152 struct sigaction sa; 153 struct sigaction osa; 154 stack_t ss; 155 stack_t oss; 156 sigset_t sigs; 157 sigset_t osigs; 158 sigjmp_buf old_env; 159 static pthread_mutex_t sigusr2_mutex = PTHREAD_MUTEX_INITIALIZER; 160 161 /* The way to manipulate stack is with the sigaltstack function. We 162 * prepare a stack, with it delivering a signal to ourselves and then 163 * put sigsetjmp/siglongjmp where needed. 164 * This has been done keeping coroutine-ucontext as a model and with the 165 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics 166 * of the coroutines and see pth_mctx.c (from the pth project) for the 167 * sigaltstack way of manipulating stacks. 168 */ 169 170 co = g_malloc0(sizeof(*co)); 171 co->stack_size = COROUTINE_STACK_SIZE; 172 co->stack = qemu_alloc_stack(&co->stack_size); 173 co->base.entry_arg = &old_env; /* stash away our jmp_buf */ 174 175 coTS = coroutine_get_thread_state(); 176 coTS->tr_handler = co; 177 178 /* 179 * Preserve the SIGUSR2 signal state, block SIGUSR2, 180 * and establish our signal handler. The signal will 181 * later transfer control onto the signal stack. 182 */ 183 sigemptyset(&sigs); 184 sigaddset(&sigs, SIGUSR2); 185 pthread_sigmask(SIG_BLOCK, &sigs, &osigs); 186 sa.sa_handler = coroutine_trampoline; 187 sigfillset(&sa.sa_mask); 188 sa.sa_flags = SA_ONSTACK; 189 190 /* 191 * sigaction() is a process-global operation. We must not run 192 * this code in multiple threads at once. 193 */ 194 pthread_mutex_lock(&sigusr2_mutex); 195 if (sigaction(SIGUSR2, &sa, &osa) != 0) { 196 abort(); 197 } 198 199 /* 200 * Set the new stack. 201 */ 202 ss.ss_sp = co->stack; 203 ss.ss_size = co->stack_size; 204 ss.ss_flags = 0; 205 if (sigaltstack(&ss, &oss) < 0) { 206 abort(); 207 } 208 209 /* 210 * Now transfer control onto the signal stack and set it up. 211 * It will return immediately via "return" after the sigsetjmp() 212 * was performed. Be careful here with race conditions. The 213 * signal can be delivered the first time sigsuspend() is 214 * called. 215 */ 216 coTS->tr_called = 0; 217 pthread_kill(pthread_self(), SIGUSR2); 218 sigfillset(&sigs); 219 sigdelset(&sigs, SIGUSR2); 220 while (!coTS->tr_called) { 221 sigsuspend(&sigs); 222 } 223 224 /* 225 * Inform the system that we are back off the signal stack by 226 * removing the alternative signal stack. Be careful here: It 227 * first has to be disabled, before it can be removed. 228 */ 229 sigaltstack(NULL, &ss); 230 ss.ss_flags = SS_DISABLE; 231 if (sigaltstack(&ss, NULL) < 0) { 232 abort(); 233 } 234 sigaltstack(NULL, &ss); 235 if (!(oss.ss_flags & SS_DISABLE)) { 236 sigaltstack(&oss, NULL); 237 } 238 239 /* 240 * Restore the old SIGUSR2 signal handler and mask 241 */ 242 sigaction(SIGUSR2, &osa, NULL); 243 pthread_mutex_unlock(&sigusr2_mutex); 244 245 pthread_sigmask(SIG_SETMASK, &osigs, NULL); 246 247 /* 248 * Now enter the trampoline again, but this time not as a signal 249 * handler. Instead we jump into it directly. The functionally 250 * redundant ping-pong pointer arithmetic is necessary to avoid 251 * type-conversion warnings related to the `volatile' qualifier and 252 * the fact that `jmp_buf' usually is an array type. 253 */ 254 if (!sigsetjmp(old_env, 0)) { 255 siglongjmp(coTS->tr_reenter, 1); 256 } 257 258 /* 259 * Ok, we returned again, so now we're finished 260 */ 261 262 return &co->base; 263 } 264 265 void qemu_coroutine_delete(Coroutine *co_) 266 { 267 CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_); 268 269 qemu_free_stack(co->stack, co->stack_size); 270 g_free(co); 271 } 272 273 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_, 274 CoroutineAction action) 275 { 276 CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_); 277 CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_); 278 CoroutineThreadState *s = coroutine_get_thread_state(); 279 int ret; 280 281 s->current = to_; 282 283 ret = sigsetjmp(from->env, 0); 284 if (ret == 0) { 285 siglongjmp(to->env, action); 286 } 287 return ret; 288 } 289 290 Coroutine *qemu_coroutine_self(void) 291 { 292 CoroutineThreadState *s = coroutine_get_thread_state(); 293 294 return s->current; 295 } 296 297 bool qemu_in_coroutine(void) 298 { 299 CoroutineThreadState *s = pthread_getspecific(thread_state_key); 300 301 return s && s->current->caller; 302 } 303 304