xref: /openbmc/qemu/util/coroutine-sigaltstack.c (revision be99a9a0)
1 /*
2  * sigaltstack coroutine initialization code
3  *
4  * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
5  * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
6  * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 **  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
27 #endif
28 #include "qemu/osdep.h"
29 #include <pthread.h>
30 #include "qemu-common.h"
31 #include "qemu/coroutine_int.h"
32 
33 #ifdef CONFIG_SAFESTACK
34 #error "SafeStack is not compatible with code run in alternate signal stacks"
35 #endif
36 
37 typedef struct {
38     Coroutine base;
39     void *stack;
40     size_t stack_size;
41     sigjmp_buf env;
42 } CoroutineSigAltStack;
43 
44 /**
45  * Per-thread coroutine bookkeeping
46  */
47 typedef struct {
48     /** Currently executing coroutine */
49     Coroutine *current;
50 
51     /** The default coroutine */
52     CoroutineSigAltStack leader;
53 
54     /** Information for the signal handler (trampoline) */
55     sigjmp_buf tr_reenter;
56     volatile sig_atomic_t tr_called;
57     void *tr_handler;
58 } CoroutineThreadState;
59 
60 static pthread_key_t thread_state_key;
61 
62 static CoroutineThreadState *coroutine_get_thread_state(void)
63 {
64     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
65 
66     if (!s) {
67         s = g_malloc0(sizeof(*s));
68         s->current = &s->leader.base;
69         pthread_setspecific(thread_state_key, s);
70     }
71     return s;
72 }
73 
74 static void qemu_coroutine_thread_cleanup(void *opaque)
75 {
76     CoroutineThreadState *s = opaque;
77 
78     g_free(s);
79 }
80 
81 static void __attribute__((constructor)) coroutine_init(void)
82 {
83     int ret;
84 
85     ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
86     if (ret != 0) {
87         fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
88         abort();
89     }
90 }
91 
92 /* "boot" function
93  * This is what starts the coroutine, is called from the trampoline
94  * (from the signal handler when it is not signal handling, read ahead
95  * for more information).
96  */
97 static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co)
98 {
99     /* Initialize longjmp environment and switch back the caller */
100     if (!sigsetjmp(self->env, 0)) {
101         siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
102     }
103 
104     while (true) {
105         co->entry(co->entry_arg);
106         qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
107     }
108 }
109 
110 /*
111  * This is used as the signal handler. This is called with the brand new stack
112  * (thanks to sigaltstack). We have to return, given that this is a signal
113  * handler and the sigmask and some other things are changed.
114  */
115 static void coroutine_trampoline(int signal)
116 {
117     CoroutineSigAltStack *self;
118     Coroutine *co;
119     CoroutineThreadState *coTS;
120 
121     /* Get the thread specific information */
122     coTS = coroutine_get_thread_state();
123     self = coTS->tr_handler;
124     coTS->tr_called = 1;
125     co = &self->base;
126 
127     /*
128      * Here we have to do a bit of a ping pong between the caller, given that
129      * this is a signal handler and we have to do a return "soon". Then the
130      * caller can reestablish everything and do a siglongjmp here again.
131      */
132     if (!sigsetjmp(coTS->tr_reenter, 0)) {
133         return;
134     }
135 
136     /*
137      * Ok, the caller has siglongjmp'ed back to us, so now prepare
138      * us for the real machine state switching. We have to jump
139      * into another function here to get a new stack context for
140      * the auto variables (which have to be auto-variables
141      * because the start of the thread happens later). Else with
142      * PIC (i.e. Position Independent Code which is used when PTH
143      * is built as a shared library) most platforms would
144      * horrible core dump as experience showed.
145      */
146     coroutine_bootstrap(self, co);
147 }
148 
149 Coroutine *qemu_coroutine_new(void)
150 {
151     CoroutineSigAltStack *co;
152     CoroutineThreadState *coTS;
153     struct sigaction sa;
154     struct sigaction osa;
155     stack_t ss;
156     stack_t oss;
157     sigset_t sigs;
158     sigset_t osigs;
159     sigjmp_buf old_env;
160 
161     /* The way to manipulate stack is with the sigaltstack function. We
162      * prepare a stack, with it delivering a signal to ourselves and then
163      * put sigsetjmp/siglongjmp where needed.
164      * This has been done keeping coroutine-ucontext as a model and with the
165      * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
166      * of the coroutines and see pth_mctx.c (from the pth project) for the
167      * sigaltstack way of manipulating stacks.
168      */
169 
170     co = g_malloc0(sizeof(*co));
171     co->stack_size = COROUTINE_STACK_SIZE;
172     co->stack = qemu_alloc_stack(&co->stack_size);
173     co->base.entry_arg = &old_env; /* stash away our jmp_buf */
174 
175     coTS = coroutine_get_thread_state();
176     coTS->tr_handler = co;
177 
178     /*
179      * Preserve the SIGUSR2 signal state, block SIGUSR2,
180      * and establish our signal handler. The signal will
181      * later transfer control onto the signal stack.
182      */
183     sigemptyset(&sigs);
184     sigaddset(&sigs, SIGUSR2);
185     pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
186     sa.sa_handler = coroutine_trampoline;
187     sigfillset(&sa.sa_mask);
188     sa.sa_flags = SA_ONSTACK;
189     if (sigaction(SIGUSR2, &sa, &osa) != 0) {
190         abort();
191     }
192 
193     /*
194      * Set the new stack.
195      */
196     ss.ss_sp = co->stack;
197     ss.ss_size = co->stack_size;
198     ss.ss_flags = 0;
199     if (sigaltstack(&ss, &oss) < 0) {
200         abort();
201     }
202 
203     /*
204      * Now transfer control onto the signal stack and set it up.
205      * It will return immediately via "return" after the sigsetjmp()
206      * was performed. Be careful here with race conditions.  The
207      * signal can be delivered the first time sigsuspend() is
208      * called.
209      */
210     coTS->tr_called = 0;
211     pthread_kill(pthread_self(), SIGUSR2);
212     sigfillset(&sigs);
213     sigdelset(&sigs, SIGUSR2);
214     while (!coTS->tr_called) {
215         sigsuspend(&sigs);
216     }
217 
218     /*
219      * Inform the system that we are back off the signal stack by
220      * removing the alternative signal stack. Be careful here: It
221      * first has to be disabled, before it can be removed.
222      */
223     sigaltstack(NULL, &ss);
224     ss.ss_flags = SS_DISABLE;
225     if (sigaltstack(&ss, NULL) < 0) {
226         abort();
227     }
228     sigaltstack(NULL, &ss);
229     if (!(oss.ss_flags & SS_DISABLE)) {
230         sigaltstack(&oss, NULL);
231     }
232 
233     /*
234      * Restore the old SIGUSR2 signal handler and mask
235      */
236     sigaction(SIGUSR2, &osa, NULL);
237     pthread_sigmask(SIG_SETMASK, &osigs, NULL);
238 
239     /*
240      * Now enter the trampoline again, but this time not as a signal
241      * handler. Instead we jump into it directly. The functionally
242      * redundant ping-pong pointer arithmetic is necessary to avoid
243      * type-conversion warnings related to the `volatile' qualifier and
244      * the fact that `jmp_buf' usually is an array type.
245      */
246     if (!sigsetjmp(old_env, 0)) {
247         siglongjmp(coTS->tr_reenter, 1);
248     }
249 
250     /*
251      * Ok, we returned again, so now we're finished
252      */
253 
254     return &co->base;
255 }
256 
257 void qemu_coroutine_delete(Coroutine *co_)
258 {
259     CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_);
260 
261     qemu_free_stack(co->stack, co->stack_size);
262     g_free(co);
263 }
264 
265 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
266                                       CoroutineAction action)
267 {
268     CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_);
269     CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_);
270     CoroutineThreadState *s = coroutine_get_thread_state();
271     int ret;
272 
273     s->current = to_;
274 
275     ret = sigsetjmp(from->env, 0);
276     if (ret == 0) {
277         siglongjmp(to->env, action);
278     }
279     return ret;
280 }
281 
282 Coroutine *qemu_coroutine_self(void)
283 {
284     CoroutineThreadState *s = coroutine_get_thread_state();
285 
286     return s->current;
287 }
288 
289 bool qemu_in_coroutine(void)
290 {
291     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
292 
293     return s && s->current->caller;
294 }
295 
296