xref: /openbmc/qemu/util/coroutine-sigaltstack.c (revision 646c5478)
1 /*
2  * sigaltstack coroutine initialization code
3  *
4  * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
5  * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
6  * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 **  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
27 #endif
28 #include "qemu/osdep.h"
29 #include <pthread.h>
30 #include "qemu-common.h"
31 #include "qemu/coroutine_int.h"
32 
33 typedef struct {
34     Coroutine base;
35     void *stack;
36     size_t stack_size;
37     sigjmp_buf env;
38 } CoroutineSigAltStack;
39 
40 /**
41  * Per-thread coroutine bookkeeping
42  */
43 typedef struct {
44     /** Currently executing coroutine */
45     Coroutine *current;
46 
47     /** The default coroutine */
48     CoroutineSigAltStack leader;
49 
50     /** Information for the signal handler (trampoline) */
51     sigjmp_buf tr_reenter;
52     volatile sig_atomic_t tr_called;
53     void *tr_handler;
54 } CoroutineThreadState;
55 
56 static pthread_key_t thread_state_key;
57 
58 static CoroutineThreadState *coroutine_get_thread_state(void)
59 {
60     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
61 
62     if (!s) {
63         s = g_malloc0(sizeof(*s));
64         s->current = &s->leader.base;
65         pthread_setspecific(thread_state_key, s);
66     }
67     return s;
68 }
69 
70 static void qemu_coroutine_thread_cleanup(void *opaque)
71 {
72     CoroutineThreadState *s = opaque;
73 
74     g_free(s);
75 }
76 
77 static void __attribute__((constructor)) coroutine_init(void)
78 {
79     int ret;
80 
81     ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
82     if (ret != 0) {
83         fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
84         abort();
85     }
86 }
87 
88 /* "boot" function
89  * This is what starts the coroutine, is called from the trampoline
90  * (from the signal handler when it is not signal handling, read ahead
91  * for more information).
92  */
93 static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co)
94 {
95     /* Initialize longjmp environment and switch back the caller */
96     if (!sigsetjmp(self->env, 0)) {
97         siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
98     }
99 
100     while (true) {
101         co->entry(co->entry_arg);
102         qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
103     }
104 }
105 
106 /*
107  * This is used as the signal handler. This is called with the brand new stack
108  * (thanks to sigaltstack). We have to return, given that this is a signal
109  * handler and the sigmask and some other things are changed.
110  */
111 static void coroutine_trampoline(int signal)
112 {
113     CoroutineSigAltStack *self;
114     Coroutine *co;
115     CoroutineThreadState *coTS;
116 
117     /* Get the thread specific information */
118     coTS = coroutine_get_thread_state();
119     self = coTS->tr_handler;
120     coTS->tr_called = 1;
121     co = &self->base;
122 
123     /*
124      * Here we have to do a bit of a ping pong between the caller, given that
125      * this is a signal handler and we have to do a return "soon". Then the
126      * caller can reestablish everything and do a siglongjmp here again.
127      */
128     if (!sigsetjmp(coTS->tr_reenter, 0)) {
129         return;
130     }
131 
132     /*
133      * Ok, the caller has siglongjmp'ed back to us, so now prepare
134      * us for the real machine state switching. We have to jump
135      * into another function here to get a new stack context for
136      * the auto variables (which have to be auto-variables
137      * because the start of the thread happens later). Else with
138      * PIC (i.e. Position Independent Code which is used when PTH
139      * is built as a shared library) most platforms would
140      * horrible core dump as experience showed.
141      */
142     coroutine_bootstrap(self, co);
143 }
144 
145 Coroutine *qemu_coroutine_new(void)
146 {
147     CoroutineSigAltStack *co;
148     CoroutineThreadState *coTS;
149     struct sigaction sa;
150     struct sigaction osa;
151     stack_t ss;
152     stack_t oss;
153     sigset_t sigs;
154     sigset_t osigs;
155     sigjmp_buf old_env;
156 
157     /* The way to manipulate stack is with the sigaltstack function. We
158      * prepare a stack, with it delivering a signal to ourselves and then
159      * put sigsetjmp/siglongjmp where needed.
160      * This has been done keeping coroutine-ucontext as a model and with the
161      * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
162      * of the coroutines and see pth_mctx.c (from the pth project) for the
163      * sigaltstack way of manipulating stacks.
164      */
165 
166     co = g_malloc0(sizeof(*co));
167     co->stack_size = COROUTINE_STACK_SIZE;
168     co->stack = qemu_alloc_stack(&co->stack_size);
169     co->base.entry_arg = &old_env; /* stash away our jmp_buf */
170 
171     coTS = coroutine_get_thread_state();
172     coTS->tr_handler = co;
173 
174     /*
175      * Preserve the SIGUSR2 signal state, block SIGUSR2,
176      * and establish our signal handler. The signal will
177      * later transfer control onto the signal stack.
178      */
179     sigemptyset(&sigs);
180     sigaddset(&sigs, SIGUSR2);
181     pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
182     sa.sa_handler = coroutine_trampoline;
183     sigfillset(&sa.sa_mask);
184     sa.sa_flags = SA_ONSTACK;
185     if (sigaction(SIGUSR2, &sa, &osa) != 0) {
186         abort();
187     }
188 
189     /*
190      * Set the new stack.
191      */
192     ss.ss_sp = co->stack;
193     ss.ss_size = co->stack_size;
194     ss.ss_flags = 0;
195     if (sigaltstack(&ss, &oss) < 0) {
196         abort();
197     }
198 
199     /*
200      * Now transfer control onto the signal stack and set it up.
201      * It will return immediately via "return" after the sigsetjmp()
202      * was performed. Be careful here with race conditions.  The
203      * signal can be delivered the first time sigsuspend() is
204      * called.
205      */
206     coTS->tr_called = 0;
207     pthread_kill(pthread_self(), SIGUSR2);
208     sigfillset(&sigs);
209     sigdelset(&sigs, SIGUSR2);
210     while (!coTS->tr_called) {
211         sigsuspend(&sigs);
212     }
213 
214     /*
215      * Inform the system that we are back off the signal stack by
216      * removing the alternative signal stack. Be careful here: It
217      * first has to be disabled, before it can be removed.
218      */
219     sigaltstack(NULL, &ss);
220     ss.ss_flags = SS_DISABLE;
221     if (sigaltstack(&ss, NULL) < 0) {
222         abort();
223     }
224     sigaltstack(NULL, &ss);
225     if (!(oss.ss_flags & SS_DISABLE)) {
226         sigaltstack(&oss, NULL);
227     }
228 
229     /*
230      * Restore the old SIGUSR2 signal handler and mask
231      */
232     sigaction(SIGUSR2, &osa, NULL);
233     pthread_sigmask(SIG_SETMASK, &osigs, NULL);
234 
235     /*
236      * Now enter the trampoline again, but this time not as a signal
237      * handler. Instead we jump into it directly. The functionally
238      * redundant ping-pong pointer arithmetic is necessary to avoid
239      * type-conversion warnings related to the `volatile' qualifier and
240      * the fact that `jmp_buf' usually is an array type.
241      */
242     if (!sigsetjmp(old_env, 0)) {
243         siglongjmp(coTS->tr_reenter, 1);
244     }
245 
246     /*
247      * Ok, we returned again, so now we're finished
248      */
249 
250     return &co->base;
251 }
252 
253 void qemu_coroutine_delete(Coroutine *co_)
254 {
255     CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_);
256 
257     qemu_free_stack(co->stack, co->stack_size);
258     g_free(co);
259 }
260 
261 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
262                                       CoroutineAction action)
263 {
264     CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_);
265     CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_);
266     CoroutineThreadState *s = coroutine_get_thread_state();
267     int ret;
268 
269     s->current = to_;
270 
271     ret = sigsetjmp(from->env, 0);
272     if (ret == 0) {
273         siglongjmp(to->env, action);
274     }
275     return ret;
276 }
277 
278 Coroutine *qemu_coroutine_self(void)
279 {
280     CoroutineThreadState *s = coroutine_get_thread_state();
281 
282     return s->current;
283 }
284 
285 bool qemu_in_coroutine(void)
286 {
287     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
288 
289     return s && s->current->caller;
290 }
291 
292