xref: /openbmc/qemu/util/coroutine-sigaltstack.c (revision 63785678)
1 /*
2  * sigaltstack coroutine initialization code
3  *
4  * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
5  * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
6  * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 **  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
27 #endif
28 #include "qemu/osdep.h"
29 #include <pthread.h>
30 #include "qemu-common.h"
31 #include "qemu/coroutine_int.h"
32 
33 typedef struct {
34     Coroutine base;
35     void *stack;
36     sigjmp_buf env;
37 } CoroutineUContext;
38 
39 /**
40  * Per-thread coroutine bookkeeping
41  */
42 typedef struct {
43     /** Currently executing coroutine */
44     Coroutine *current;
45 
46     /** The default coroutine */
47     CoroutineUContext leader;
48 
49     /** Information for the signal handler (trampoline) */
50     sigjmp_buf tr_reenter;
51     volatile sig_atomic_t tr_called;
52     void *tr_handler;
53 } CoroutineThreadState;
54 
55 static pthread_key_t thread_state_key;
56 
57 static CoroutineThreadState *coroutine_get_thread_state(void)
58 {
59     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
60 
61     if (!s) {
62         s = g_malloc0(sizeof(*s));
63         s->current = &s->leader.base;
64         pthread_setspecific(thread_state_key, s);
65     }
66     return s;
67 }
68 
69 static void qemu_coroutine_thread_cleanup(void *opaque)
70 {
71     CoroutineThreadState *s = opaque;
72 
73     g_free(s);
74 }
75 
76 static void __attribute__((constructor)) coroutine_init(void)
77 {
78     int ret;
79 
80     ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
81     if (ret != 0) {
82         fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
83         abort();
84     }
85 }
86 
87 /* "boot" function
88  * This is what starts the coroutine, is called from the trampoline
89  * (from the signal handler when it is not signal handling, read ahead
90  * for more information).
91  */
92 static void coroutine_bootstrap(CoroutineUContext *self, Coroutine *co)
93 {
94     /* Initialize longjmp environment and switch back the caller */
95     if (!sigsetjmp(self->env, 0)) {
96         siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
97     }
98 
99     while (true) {
100         co->entry(co->entry_arg);
101         qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
102     }
103 }
104 
105 /*
106  * This is used as the signal handler. This is called with the brand new stack
107  * (thanks to sigaltstack). We have to return, given that this is a signal
108  * handler and the sigmask and some other things are changed.
109  */
110 static void coroutine_trampoline(int signal)
111 {
112     CoroutineUContext *self;
113     Coroutine *co;
114     CoroutineThreadState *coTS;
115 
116     /* Get the thread specific information */
117     coTS = coroutine_get_thread_state();
118     self = coTS->tr_handler;
119     coTS->tr_called = 1;
120     co = &self->base;
121 
122     /*
123      * Here we have to do a bit of a ping pong between the caller, given that
124      * this is a signal handler and we have to do a return "soon". Then the
125      * caller can reestablish everything and do a siglongjmp here again.
126      */
127     if (!sigsetjmp(coTS->tr_reenter, 0)) {
128         return;
129     }
130 
131     /*
132      * Ok, the caller has siglongjmp'ed back to us, so now prepare
133      * us for the real machine state switching. We have to jump
134      * into another function here to get a new stack context for
135      * the auto variables (which have to be auto-variables
136      * because the start of the thread happens later). Else with
137      * PIC (i.e. Position Independent Code which is used when PTH
138      * is built as a shared library) most platforms would
139      * horrible core dump as experience showed.
140      */
141     coroutine_bootstrap(self, co);
142 }
143 
144 Coroutine *qemu_coroutine_new(void)
145 {
146     const size_t stack_size = 1 << 20;
147     CoroutineUContext *co;
148     CoroutineThreadState *coTS;
149     struct sigaction sa;
150     struct sigaction osa;
151     stack_t ss;
152     stack_t oss;
153     sigset_t sigs;
154     sigset_t osigs;
155     sigjmp_buf old_env;
156 
157     /* The way to manipulate stack is with the sigaltstack function. We
158      * prepare a stack, with it delivering a signal to ourselves and then
159      * put sigsetjmp/siglongjmp where needed.
160      * This has been done keeping coroutine-ucontext as a model and with the
161      * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
162      * of the coroutines and see pth_mctx.c (from the pth project) for the
163      * sigaltstack way of manipulating stacks.
164      */
165 
166     co = g_malloc0(sizeof(*co));
167     co->stack = g_malloc(stack_size);
168     co->base.entry_arg = &old_env; /* stash away our jmp_buf */
169 
170     coTS = coroutine_get_thread_state();
171     coTS->tr_handler = co;
172 
173     /*
174      * Preserve the SIGUSR2 signal state, block SIGUSR2,
175      * and establish our signal handler. The signal will
176      * later transfer control onto the signal stack.
177      */
178     sigemptyset(&sigs);
179     sigaddset(&sigs, SIGUSR2);
180     pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
181     sa.sa_handler = coroutine_trampoline;
182     sigfillset(&sa.sa_mask);
183     sa.sa_flags = SA_ONSTACK;
184     if (sigaction(SIGUSR2, &sa, &osa) != 0) {
185         abort();
186     }
187 
188     /*
189      * Set the new stack.
190      */
191     ss.ss_sp = co->stack;
192     ss.ss_size = stack_size;
193     ss.ss_flags = 0;
194     if (sigaltstack(&ss, &oss) < 0) {
195         abort();
196     }
197 
198     /*
199      * Now transfer control onto the signal stack and set it up.
200      * It will return immediately via "return" after the sigsetjmp()
201      * was performed. Be careful here with race conditions.  The
202      * signal can be delivered the first time sigsuspend() is
203      * called.
204      */
205     coTS->tr_called = 0;
206     pthread_kill(pthread_self(), SIGUSR2);
207     sigfillset(&sigs);
208     sigdelset(&sigs, SIGUSR2);
209     while (!coTS->tr_called) {
210         sigsuspend(&sigs);
211     }
212 
213     /*
214      * Inform the system that we are back off the signal stack by
215      * removing the alternative signal stack. Be careful here: It
216      * first has to be disabled, before it can be removed.
217      */
218     sigaltstack(NULL, &ss);
219     ss.ss_flags = SS_DISABLE;
220     if (sigaltstack(&ss, NULL) < 0) {
221         abort();
222     }
223     sigaltstack(NULL, &ss);
224     if (!(oss.ss_flags & SS_DISABLE)) {
225         sigaltstack(&oss, NULL);
226     }
227 
228     /*
229      * Restore the old SIGUSR2 signal handler and mask
230      */
231     sigaction(SIGUSR2, &osa, NULL);
232     pthread_sigmask(SIG_SETMASK, &osigs, NULL);
233 
234     /*
235      * Now enter the trampoline again, but this time not as a signal
236      * handler. Instead we jump into it directly. The functionally
237      * redundant ping-pong pointer arithmetic is necessary to avoid
238      * type-conversion warnings related to the `volatile' qualifier and
239      * the fact that `jmp_buf' usually is an array type.
240      */
241     if (!sigsetjmp(old_env, 0)) {
242         siglongjmp(coTS->tr_reenter, 1);
243     }
244 
245     /*
246      * Ok, we returned again, so now we're finished
247      */
248 
249     return &co->base;
250 }
251 
252 void qemu_coroutine_delete(Coroutine *co_)
253 {
254     CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
255 
256     g_free(co->stack);
257     g_free(co);
258 }
259 
260 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
261                                       CoroutineAction action)
262 {
263     CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
264     CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
265     CoroutineThreadState *s = coroutine_get_thread_state();
266     int ret;
267 
268     s->current = to_;
269 
270     ret = sigsetjmp(from->env, 0);
271     if (ret == 0) {
272         siglongjmp(to->env, action);
273     }
274     return ret;
275 }
276 
277 Coroutine *qemu_coroutine_self(void)
278 {
279     CoroutineThreadState *s = coroutine_get_thread_state();
280 
281     return s->current;
282 }
283 
284 bool qemu_in_coroutine(void)
285 {
286     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
287 
288     return s && s->current->caller;
289 }
290 
291