1 /* 2 * sigaltstack coroutine initialization code 3 * 4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws> 5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com> 6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu> 7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads 8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com> 9 * 10 * This library is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU Lesser General Public 12 * License as published by the Free Software Foundation; either 13 * version 2.1 of the License, or (at your option) any later version. 14 * 15 * This library is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * Lesser General Public License for more details. 19 * 20 * You should have received a copy of the GNU Lesser General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */ 25 #ifdef _FORTIFY_SOURCE 26 #undef _FORTIFY_SOURCE 27 #endif 28 #include "qemu/osdep.h" 29 #include <pthread.h> 30 #include "qemu-common.h" 31 #include "qemu/coroutine_int.h" 32 33 #ifdef CONFIG_SAFESTACK 34 #error "SafeStack is not compatible with code run in alternate signal stacks" 35 #endif 36 37 typedef struct { 38 Coroutine base; 39 void *stack; 40 size_t stack_size; 41 sigjmp_buf env; 42 } CoroutineSigAltStack; 43 44 /** 45 * Per-thread coroutine bookkeeping 46 */ 47 typedef struct { 48 /** Currently executing coroutine */ 49 Coroutine *current; 50 51 /** The default coroutine */ 52 CoroutineSigAltStack leader; 53 54 /** Information for the signal handler (trampoline) */ 55 sigjmp_buf tr_reenter; 56 volatile sig_atomic_t tr_called; 57 void *tr_handler; 58 } CoroutineThreadState; 59 60 static pthread_key_t thread_state_key; 61 62 static CoroutineThreadState *coroutine_get_thread_state(void) 63 { 64 CoroutineThreadState *s = pthread_getspecific(thread_state_key); 65 66 if (!s) { 67 s = g_malloc0(sizeof(*s)); 68 s->current = &s->leader.base; 69 pthread_setspecific(thread_state_key, s); 70 } 71 return s; 72 } 73 74 static void qemu_coroutine_thread_cleanup(void *opaque) 75 { 76 CoroutineThreadState *s = opaque; 77 78 g_free(s); 79 } 80 81 static void __attribute__((constructor)) coroutine_init(void) 82 { 83 int ret; 84 85 ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup); 86 if (ret != 0) { 87 fprintf(stderr, "unable to create leader key: %s\n", strerror(errno)); 88 abort(); 89 } 90 } 91 92 /* "boot" function 93 * This is what starts the coroutine, is called from the trampoline 94 * (from the signal handler when it is not signal handling, read ahead 95 * for more information). 96 */ 97 static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co) 98 { 99 /* Initialize longjmp environment and switch back the caller */ 100 if (!sigsetjmp(self->env, 0)) { 101 siglongjmp(*(sigjmp_buf *)co->entry_arg, 1); 102 } 103 104 while (true) { 105 co->entry(co->entry_arg); 106 qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE); 107 } 108 } 109 110 /* 111 * This is used as the signal handler. This is called with the brand new stack 112 * (thanks to sigaltstack). We have to return, given that this is a signal 113 * handler and the sigmask and some other things are changed. 114 */ 115 static void coroutine_trampoline(int signal) 116 { 117 CoroutineSigAltStack *self; 118 Coroutine *co; 119 CoroutineThreadState *coTS; 120 121 /* Get the thread specific information */ 122 coTS = coroutine_get_thread_state(); 123 self = coTS->tr_handler; 124 coTS->tr_called = 1; 125 co = &self->base; 126 127 /* 128 * Here we have to do a bit of a ping pong between the caller, given that 129 * this is a signal handler and we have to do a return "soon". Then the 130 * caller can reestablish everything and do a siglongjmp here again. 131 */ 132 if (!sigsetjmp(coTS->tr_reenter, 0)) { 133 return; 134 } 135 136 /* 137 * Ok, the caller has siglongjmp'ed back to us, so now prepare 138 * us for the real machine state switching. We have to jump 139 * into another function here to get a new stack context for 140 * the auto variables (which have to be auto-variables 141 * because the start of the thread happens later). Else with 142 * PIC (i.e. Position Independent Code which is used when PTH 143 * is built as a shared library) most platforms would 144 * horrible core dump as experience showed. 145 */ 146 coroutine_bootstrap(self, co); 147 } 148 149 Coroutine *qemu_coroutine_new(void) 150 { 151 CoroutineSigAltStack *co; 152 CoroutineThreadState *coTS; 153 struct sigaction sa; 154 struct sigaction osa; 155 stack_t ss; 156 stack_t oss; 157 sigset_t sigs; 158 sigset_t osigs; 159 sigjmp_buf old_env; 160 static pthread_mutex_t sigusr2_mutex = PTHREAD_MUTEX_INITIALIZER; 161 162 /* The way to manipulate stack is with the sigaltstack function. We 163 * prepare a stack, with it delivering a signal to ourselves and then 164 * put sigsetjmp/siglongjmp where needed. 165 * This has been done keeping coroutine-ucontext as a model and with the 166 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics 167 * of the coroutines and see pth_mctx.c (from the pth project) for the 168 * sigaltstack way of manipulating stacks. 169 */ 170 171 co = g_malloc0(sizeof(*co)); 172 co->stack_size = COROUTINE_STACK_SIZE; 173 co->stack = qemu_alloc_stack(&co->stack_size); 174 co->base.entry_arg = &old_env; /* stash away our jmp_buf */ 175 176 coTS = coroutine_get_thread_state(); 177 coTS->tr_handler = co; 178 179 /* 180 * Preserve the SIGUSR2 signal state, block SIGUSR2, 181 * and establish our signal handler. The signal will 182 * later transfer control onto the signal stack. 183 */ 184 sigemptyset(&sigs); 185 sigaddset(&sigs, SIGUSR2); 186 pthread_sigmask(SIG_BLOCK, &sigs, &osigs); 187 sa.sa_handler = coroutine_trampoline; 188 sigfillset(&sa.sa_mask); 189 sa.sa_flags = SA_ONSTACK; 190 191 /* 192 * sigaction() is a process-global operation. We must not run 193 * this code in multiple threads at once. 194 */ 195 pthread_mutex_lock(&sigusr2_mutex); 196 if (sigaction(SIGUSR2, &sa, &osa) != 0) { 197 abort(); 198 } 199 200 /* 201 * Set the new stack. 202 */ 203 ss.ss_sp = co->stack; 204 ss.ss_size = co->stack_size; 205 ss.ss_flags = 0; 206 if (sigaltstack(&ss, &oss) < 0) { 207 abort(); 208 } 209 210 /* 211 * Now transfer control onto the signal stack and set it up. 212 * It will return immediately via "return" after the sigsetjmp() 213 * was performed. Be careful here with race conditions. The 214 * signal can be delivered the first time sigsuspend() is 215 * called. 216 */ 217 coTS->tr_called = 0; 218 pthread_kill(pthread_self(), SIGUSR2); 219 sigfillset(&sigs); 220 sigdelset(&sigs, SIGUSR2); 221 while (!coTS->tr_called) { 222 sigsuspend(&sigs); 223 } 224 225 /* 226 * Inform the system that we are back off the signal stack by 227 * removing the alternative signal stack. Be careful here: It 228 * first has to be disabled, before it can be removed. 229 */ 230 sigaltstack(NULL, &ss); 231 ss.ss_flags = SS_DISABLE; 232 if (sigaltstack(&ss, NULL) < 0) { 233 abort(); 234 } 235 sigaltstack(NULL, &ss); 236 if (!(oss.ss_flags & SS_DISABLE)) { 237 sigaltstack(&oss, NULL); 238 } 239 240 /* 241 * Restore the old SIGUSR2 signal handler and mask 242 */ 243 sigaction(SIGUSR2, &osa, NULL); 244 pthread_mutex_unlock(&sigusr2_mutex); 245 246 pthread_sigmask(SIG_SETMASK, &osigs, NULL); 247 248 /* 249 * Now enter the trampoline again, but this time not as a signal 250 * handler. Instead we jump into it directly. The functionally 251 * redundant ping-pong pointer arithmetic is necessary to avoid 252 * type-conversion warnings related to the `volatile' qualifier and 253 * the fact that `jmp_buf' usually is an array type. 254 */ 255 if (!sigsetjmp(old_env, 0)) { 256 siglongjmp(coTS->tr_reenter, 1); 257 } 258 259 /* 260 * Ok, we returned again, so now we're finished 261 */ 262 263 return &co->base; 264 } 265 266 void qemu_coroutine_delete(Coroutine *co_) 267 { 268 CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_); 269 270 qemu_free_stack(co->stack, co->stack_size); 271 g_free(co); 272 } 273 274 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_, 275 CoroutineAction action) 276 { 277 CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_); 278 CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_); 279 CoroutineThreadState *s = coroutine_get_thread_state(); 280 int ret; 281 282 s->current = to_; 283 284 ret = sigsetjmp(from->env, 0); 285 if (ret == 0) { 286 siglongjmp(to->env, action); 287 } 288 return ret; 289 } 290 291 Coroutine *qemu_coroutine_self(void) 292 { 293 CoroutineThreadState *s = coroutine_get_thread_state(); 294 295 return s->current; 296 } 297 298 bool qemu_in_coroutine(void) 299 { 300 CoroutineThreadState *s = pthread_getspecific(thread_state_key); 301 302 return s && s->current->caller; 303 } 304 305