1 /* 2 * sigaltstack coroutine initialization code 3 * 4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws> 5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com> 6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu> 7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads 8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com> 9 * 10 * This library is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU Lesser General Public 12 * License as published by the Free Software Foundation; either 13 * version 2.1 of the License, or (at your option) any later version. 14 * 15 * This library is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * Lesser General Public License for more details. 19 * 20 * You should have received a copy of the GNU Lesser General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */ 25 #ifdef _FORTIFY_SOURCE 26 #undef _FORTIFY_SOURCE 27 #endif 28 #include "qemu/osdep.h" 29 #include <pthread.h> 30 #include "qemu-common.h" 31 #include "qemu/coroutine_int.h" 32 33 #ifdef CONFIG_SAFESTACK 34 #error "SafeStack is not compatible with code run in alternate signal stacks" 35 #endif 36 37 typedef struct { 38 Coroutine base; 39 void *stack; 40 size_t stack_size; 41 sigjmp_buf env; 42 } CoroutineSigAltStack; 43 44 /** 45 * Per-thread coroutine bookkeeping 46 */ 47 typedef struct { 48 /** Currently executing coroutine */ 49 Coroutine *current; 50 51 /** The default coroutine */ 52 CoroutineSigAltStack leader; 53 54 /** Information for the signal handler (trampoline) */ 55 sigjmp_buf tr_reenter; 56 volatile sig_atomic_t tr_called; 57 void *tr_handler; 58 } CoroutineThreadState; 59 60 static pthread_key_t thread_state_key; 61 62 static CoroutineThreadState *coroutine_get_thread_state(void) 63 { 64 CoroutineThreadState *s = pthread_getspecific(thread_state_key); 65 66 if (!s) { 67 s = g_malloc0(sizeof(*s)); 68 s->current = &s->leader.base; 69 pthread_setspecific(thread_state_key, s); 70 } 71 return s; 72 } 73 74 static void qemu_coroutine_thread_cleanup(void *opaque) 75 { 76 CoroutineThreadState *s = opaque; 77 78 g_free(s); 79 } 80 81 static void __attribute__((constructor)) coroutine_init(void) 82 { 83 int ret; 84 85 ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup); 86 if (ret != 0) { 87 fprintf(stderr, "unable to create leader key: %s\n", strerror(errno)); 88 abort(); 89 } 90 } 91 92 /* "boot" function 93 * This is what starts the coroutine, is called from the trampoline 94 * (from the signal handler when it is not signal handling, read ahead 95 * for more information). 96 */ 97 static void coroutine_bootstrap(CoroutineSigAltStack *self, Coroutine *co) 98 { 99 /* Initialize longjmp environment and switch back the caller */ 100 if (!sigsetjmp(self->env, 0)) { 101 siglongjmp(*(sigjmp_buf *)co->entry_arg, 1); 102 } 103 104 while (true) { 105 co->entry(co->entry_arg); 106 qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE); 107 } 108 } 109 110 /* 111 * This is used as the signal handler. This is called with the brand new stack 112 * (thanks to sigaltstack). We have to return, given that this is a signal 113 * handler and the sigmask and some other things are changed. 114 */ 115 static void coroutine_trampoline(int signal) 116 { 117 CoroutineSigAltStack *self; 118 Coroutine *co; 119 CoroutineThreadState *coTS; 120 121 /* Get the thread specific information */ 122 coTS = coroutine_get_thread_state(); 123 self = coTS->tr_handler; 124 coTS->tr_called = 1; 125 co = &self->base; 126 127 /* 128 * Here we have to do a bit of a ping pong between the caller, given that 129 * this is a signal handler and we have to do a return "soon". Then the 130 * caller can reestablish everything and do a siglongjmp here again. 131 */ 132 if (!sigsetjmp(coTS->tr_reenter, 0)) { 133 return; 134 } 135 136 /* 137 * Ok, the caller has siglongjmp'ed back to us, so now prepare 138 * us for the real machine state switching. We have to jump 139 * into another function here to get a new stack context for 140 * the auto variables (which have to be auto-variables 141 * because the start of the thread happens later). Else with 142 * PIC (i.e. Position Independent Code which is used when PTH 143 * is built as a shared library) most platforms would 144 * horrible core dump as experience showed. 145 */ 146 coroutine_bootstrap(self, co); 147 } 148 149 Coroutine *qemu_coroutine_new(void) 150 { 151 CoroutineSigAltStack *co; 152 CoroutineThreadState *coTS; 153 struct sigaction sa; 154 struct sigaction osa; 155 stack_t ss; 156 stack_t oss; 157 sigset_t sigs; 158 sigset_t osigs; 159 sigjmp_buf old_env; 160 161 /* The way to manipulate stack is with the sigaltstack function. We 162 * prepare a stack, with it delivering a signal to ourselves and then 163 * put sigsetjmp/siglongjmp where needed. 164 * This has been done keeping coroutine-ucontext as a model and with the 165 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics 166 * of the coroutines and see pth_mctx.c (from the pth project) for the 167 * sigaltstack way of manipulating stacks. 168 */ 169 170 co = g_malloc0(sizeof(*co)); 171 co->stack_size = COROUTINE_STACK_SIZE; 172 co->stack = qemu_alloc_stack(&co->stack_size); 173 co->base.entry_arg = &old_env; /* stash away our jmp_buf */ 174 175 coTS = coroutine_get_thread_state(); 176 coTS->tr_handler = co; 177 178 /* 179 * Preserve the SIGUSR2 signal state, block SIGUSR2, 180 * and establish our signal handler. The signal will 181 * later transfer control onto the signal stack. 182 */ 183 sigemptyset(&sigs); 184 sigaddset(&sigs, SIGUSR2); 185 pthread_sigmask(SIG_BLOCK, &sigs, &osigs); 186 sa.sa_handler = coroutine_trampoline; 187 sigfillset(&sa.sa_mask); 188 sa.sa_flags = SA_ONSTACK; 189 if (sigaction(SIGUSR2, &sa, &osa) != 0) { 190 abort(); 191 } 192 193 /* 194 * Set the new stack. 195 */ 196 ss.ss_sp = co->stack; 197 ss.ss_size = co->stack_size; 198 ss.ss_flags = 0; 199 if (sigaltstack(&ss, &oss) < 0) { 200 abort(); 201 } 202 203 /* 204 * Now transfer control onto the signal stack and set it up. 205 * It will return immediately via "return" after the sigsetjmp() 206 * was performed. Be careful here with race conditions. The 207 * signal can be delivered the first time sigsuspend() is 208 * called. 209 */ 210 coTS->tr_called = 0; 211 pthread_kill(pthread_self(), SIGUSR2); 212 sigfillset(&sigs); 213 sigdelset(&sigs, SIGUSR2); 214 while (!coTS->tr_called) { 215 sigsuspend(&sigs); 216 } 217 218 /* 219 * Inform the system that we are back off the signal stack by 220 * removing the alternative signal stack. Be careful here: It 221 * first has to be disabled, before it can be removed. 222 */ 223 sigaltstack(NULL, &ss); 224 ss.ss_flags = SS_DISABLE; 225 if (sigaltstack(&ss, NULL) < 0) { 226 abort(); 227 } 228 sigaltstack(NULL, &ss); 229 if (!(oss.ss_flags & SS_DISABLE)) { 230 sigaltstack(&oss, NULL); 231 } 232 233 /* 234 * Restore the old SIGUSR2 signal handler and mask 235 */ 236 sigaction(SIGUSR2, &osa, NULL); 237 pthread_sigmask(SIG_SETMASK, &osigs, NULL); 238 239 /* 240 * Now enter the trampoline again, but this time not as a signal 241 * handler. Instead we jump into it directly. The functionally 242 * redundant ping-pong pointer arithmetic is necessary to avoid 243 * type-conversion warnings related to the `volatile' qualifier and 244 * the fact that `jmp_buf' usually is an array type. 245 */ 246 if (!sigsetjmp(old_env, 0)) { 247 siglongjmp(coTS->tr_reenter, 1); 248 } 249 250 /* 251 * Ok, we returned again, so now we're finished 252 */ 253 254 return &co->base; 255 } 256 257 void qemu_coroutine_delete(Coroutine *co_) 258 { 259 CoroutineSigAltStack *co = DO_UPCAST(CoroutineSigAltStack, base, co_); 260 261 qemu_free_stack(co->stack, co->stack_size); 262 g_free(co); 263 } 264 265 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_, 266 CoroutineAction action) 267 { 268 CoroutineSigAltStack *from = DO_UPCAST(CoroutineSigAltStack, base, from_); 269 CoroutineSigAltStack *to = DO_UPCAST(CoroutineSigAltStack, base, to_); 270 CoroutineThreadState *s = coroutine_get_thread_state(); 271 int ret; 272 273 s->current = to_; 274 275 ret = sigsetjmp(from->env, 0); 276 if (ret == 0) { 277 siglongjmp(to->env, action); 278 } 279 return ret; 280 } 281 282 Coroutine *qemu_coroutine_self(void) 283 { 284 CoroutineThreadState *s = coroutine_get_thread_state(); 285 286 return s->current; 287 } 288 289 bool qemu_in_coroutine(void) 290 { 291 CoroutineThreadState *s = pthread_getspecific(thread_state_key); 292 293 return s && s->current->caller; 294 } 295 296