1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "qemu/cutils.h" 26 #include "qemu/bswap.h" 27 28 static bool 29 buffer_zero_int(const void *buf, size_t len) 30 { 31 if (unlikely(len < 8)) { 32 /* For a very small buffer, simply accumulate all the bytes. */ 33 const unsigned char *p = buf; 34 const unsigned char *e = buf + len; 35 unsigned char t = 0; 36 37 do { 38 t |= *p++; 39 } while (p < e); 40 41 return t == 0; 42 } else { 43 /* Otherwise, use the unaligned memory access functions to 44 handle the beginning and end of the buffer, with a couple 45 of loops handling the middle aligned section. */ 46 uint64_t t = ldq_he_p(buf); 47 const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8); 48 const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8); 49 50 for (; p + 8 <= e; p += 8) { 51 __builtin_prefetch(p + 8); 52 if (t) { 53 return false; 54 } 55 t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; 56 } 57 while (p < e) { 58 t |= *p++; 59 } 60 t |= ldq_he_p(buf + len - 8); 61 62 return t == 0; 63 } 64 } 65 66 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__) 67 #include <immintrin.h> 68 69 /* Note that each of these vectorized functions require len >= 64. */ 70 71 static bool __attribute__((target("sse2"))) 72 buffer_zero_sse2(const void *buf, size_t len) 73 { 74 __m128i t = _mm_loadu_si128(buf); 75 __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16); 76 __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16); 77 __m128i zero = _mm_setzero_si128(); 78 79 /* Loop over 16-byte aligned blocks of 64. */ 80 while (likely(p <= e)) { 81 __builtin_prefetch(p); 82 t = _mm_cmpeq_epi8(t, zero); 83 if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) { 84 return false; 85 } 86 t = p[-4] | p[-3] | p[-2] | p[-1]; 87 p += 4; 88 } 89 90 /* Finish the aligned tail. */ 91 t |= e[-3]; 92 t |= e[-2]; 93 t |= e[-1]; 94 95 /* Finish the unaligned tail. */ 96 t |= _mm_loadu_si128(buf + len - 16); 97 98 return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF; 99 } 100 101 #ifdef CONFIG_AVX2_OPT 102 static bool __attribute__((target("sse4"))) 103 buffer_zero_sse4(const void *buf, size_t len) 104 { 105 __m128i t = _mm_loadu_si128(buf); 106 __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16); 107 __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16); 108 109 /* Loop over 16-byte aligned blocks of 64. */ 110 while (likely(p <= e)) { 111 __builtin_prefetch(p); 112 if (unlikely(!_mm_testz_si128(t, t))) { 113 return false; 114 } 115 t = p[-4] | p[-3] | p[-2] | p[-1]; 116 p += 4; 117 } 118 119 /* Finish the aligned tail. */ 120 t |= e[-3]; 121 t |= e[-2]; 122 t |= e[-1]; 123 124 /* Finish the unaligned tail. */ 125 t |= _mm_loadu_si128(buf + len - 16); 126 127 return _mm_testz_si128(t, t); 128 } 129 130 static bool __attribute__((target("avx2"))) 131 buffer_zero_avx2(const void *buf, size_t len) 132 { 133 /* Begin with an unaligned head of 32 bytes. */ 134 __m256i t = _mm256_loadu_si256(buf); 135 __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32); 136 __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32); 137 138 /* Loop over 32-byte aligned blocks of 128. */ 139 while (p <= e) { 140 __builtin_prefetch(p); 141 if (unlikely(!_mm256_testz_si256(t, t))) { 142 return false; 143 } 144 t = p[-4] | p[-3] | p[-2] | p[-1]; 145 p += 4; 146 } ; 147 148 /* Finish the last block of 128 unaligned. */ 149 t |= _mm256_loadu_si256(buf + len - 4 * 32); 150 t |= _mm256_loadu_si256(buf + len - 3 * 32); 151 t |= _mm256_loadu_si256(buf + len - 2 * 32); 152 t |= _mm256_loadu_si256(buf + len - 1 * 32); 153 154 return _mm256_testz_si256(t, t); 155 } 156 #endif /* CONFIG_AVX2_OPT */ 157 158 #ifdef CONFIG_AVX512F_OPT 159 static bool __attribute__((target("avx512f"))) 160 buffer_zero_avx512(const void *buf, size_t len) 161 { 162 /* Begin with an unaligned head of 64 bytes. */ 163 __m512i t = _mm512_loadu_si512(buf); 164 __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64); 165 __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64); 166 167 /* Loop over 64-byte aligned blocks of 256. */ 168 while (p <= e) { 169 __builtin_prefetch(p); 170 if (unlikely(_mm512_test_epi64_mask(t, t))) { 171 return false; 172 } 173 t = p[-4] | p[-3] | p[-2] | p[-1]; 174 p += 4; 175 } 176 177 t |= _mm512_loadu_si512(buf + len - 4 * 64); 178 t |= _mm512_loadu_si512(buf + len - 3 * 64); 179 t |= _mm512_loadu_si512(buf + len - 2 * 64); 180 t |= _mm512_loadu_si512(buf + len - 1 * 64); 181 182 return !_mm512_test_epi64_mask(t, t); 183 184 } 185 #endif /* CONFIG_AVX512F_OPT */ 186 187 188 /* Note that for test_buffer_is_zero_next_accel, the most preferred 189 * ISA must have the least significant bit. 190 */ 191 #define CACHE_AVX512F 1 192 #define CACHE_AVX2 2 193 #define CACHE_SSE4 4 194 #define CACHE_SSE2 8 195 196 /* Make sure that these variables are appropriately initialized when 197 * SSE2 is enabled on the compiler command-line, but the compiler is 198 * too old to support CONFIG_AVX2_OPT. 199 */ 200 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) 201 # define INIT_CACHE 0 202 # define INIT_ACCEL buffer_zero_int 203 #else 204 # ifndef __SSE2__ 205 # error "ISA selection confusion" 206 # endif 207 # define INIT_CACHE CACHE_SSE2 208 # define INIT_ACCEL buffer_zero_sse2 209 #endif 210 211 static unsigned cpuid_cache = INIT_CACHE; 212 static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL; 213 static int length_to_accel = 64; 214 215 static void init_accel(unsigned cache) 216 { 217 bool (*fn)(const void *, size_t) = buffer_zero_int; 218 if (cache & CACHE_SSE2) { 219 fn = buffer_zero_sse2; 220 length_to_accel = 64; 221 } 222 #ifdef CONFIG_AVX2_OPT 223 if (cache & CACHE_SSE4) { 224 fn = buffer_zero_sse4; 225 length_to_accel = 64; 226 } 227 if (cache & CACHE_AVX2) { 228 fn = buffer_zero_avx2; 229 length_to_accel = 128; 230 } 231 #endif 232 #ifdef CONFIG_AVX512F_OPT 233 if (cache & CACHE_AVX512F) { 234 fn = buffer_zero_avx512; 235 length_to_accel = 256; 236 } 237 #endif 238 buffer_accel = fn; 239 } 240 241 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) 242 #include "qemu/cpuid.h" 243 244 static void __attribute__((constructor)) init_cpuid_cache(void) 245 { 246 unsigned max = __get_cpuid_max(0, NULL); 247 int a, b, c, d; 248 unsigned cache = 0; 249 250 if (max >= 1) { 251 __cpuid(1, a, b, c, d); 252 if (d & bit_SSE2) { 253 cache |= CACHE_SSE2; 254 } 255 if (c & bit_SSE4_1) { 256 cache |= CACHE_SSE4; 257 } 258 259 /* We must check that AVX is not just available, but usable. */ 260 if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) { 261 unsigned bv = xgetbv_low(0); 262 __cpuid_count(7, 0, a, b, c, d); 263 if ((bv & 0x6) == 0x6 && (b & bit_AVX2)) { 264 cache |= CACHE_AVX2; 265 } 266 /* 0xe6: 267 * XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15 268 * and ZMM16-ZMM31 state are enabled by OS) 269 * XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS) 270 */ 271 if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512F)) { 272 cache |= CACHE_AVX512F; 273 } 274 } 275 } 276 cpuid_cache = cache; 277 init_accel(cache); 278 } 279 #endif /* CONFIG_AVX2_OPT */ 280 281 bool test_buffer_is_zero_next_accel(void) 282 { 283 /* If no bits set, we just tested buffer_zero_int, and there 284 are no more acceleration options to test. */ 285 if (cpuid_cache == 0) { 286 return false; 287 } 288 /* Disable the accelerator we used before and select a new one. */ 289 cpuid_cache &= cpuid_cache - 1; 290 init_accel(cpuid_cache); 291 return true; 292 } 293 294 static bool select_accel_fn(const void *buf, size_t len) 295 { 296 if (likely(len >= length_to_accel)) { 297 return buffer_accel(buf, len); 298 } 299 return buffer_zero_int(buf, len); 300 } 301 302 #else 303 #define select_accel_fn buffer_zero_int 304 bool test_buffer_is_zero_next_accel(void) 305 { 306 return false; 307 } 308 #endif 309 310 /* 311 * Checks if a buffer is all zeroes 312 */ 313 bool buffer_is_zero(const void *buf, size_t len) 314 { 315 if (unlikely(len == 0)) { 316 return true; 317 } 318 319 /* Fetch the beginning of the buffer while we select the accelerator. */ 320 __builtin_prefetch(buf); 321 322 /* Use an optimized zero check if possible. Note that this also 323 includes a check for an unrolled loop over 64-bit integers. */ 324 return select_accel_fn(buf, len); 325 } 326