1 /* 2 * Simple C functions to supplement the C library 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "qemu/cutils.h" 26 #include "qemu/bswap.h" 27 #include "host/cpuinfo.h" 28 29 typedef bool (*biz_accel_fn)(const void *, size_t); 30 31 static bool buffer_is_zero_int_lt256(const void *buf, size_t len) 32 { 33 uint64_t t; 34 const uint64_t *p, *e; 35 36 /* 37 * Use unaligned memory access functions to handle 38 * the beginning and end of the buffer. 39 */ 40 if (unlikely(len <= 8)) { 41 return (ldl_he_p(buf) | ldl_he_p(buf + len - 4)) == 0; 42 } 43 44 t = ldq_he_p(buf) | ldq_he_p(buf + len - 8); 45 p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8); 46 e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8); 47 48 /* Read 0 to 31 aligned words from the middle. */ 49 while (p < e) { 50 t |= *p++; 51 } 52 return t == 0; 53 } 54 55 static bool buffer_is_zero_int_ge256(const void *buf, size_t len) 56 { 57 /* 58 * Use unaligned memory access functions to handle 59 * the beginning and end of the buffer. 60 */ 61 uint64_t t = ldq_he_p(buf) | ldq_he_p(buf + len - 8); 62 const uint64_t *p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8); 63 const uint64_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8); 64 65 /* Collect a partial block at the tail end. */ 66 t |= e[-7] | e[-6] | e[-5] | e[-4] | e[-3] | e[-2] | e[-1]; 67 68 /* 69 * Loop over 64 byte blocks. 70 * With the head and tail removed, e - p >= 30, 71 * so the loop must iterate at least 3 times. 72 */ 73 do { 74 if (t) { 75 return false; 76 } 77 t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; 78 p += 8; 79 } while (p < e - 7); 80 81 return t == 0; 82 } 83 84 #if defined(CONFIG_AVX2_OPT) || defined(__SSE2__) 85 #include <immintrin.h> 86 87 /* Helper for preventing the compiler from reassociating 88 chains of binary vector operations. */ 89 #define SSE_REASSOC_BARRIER(vec0, vec1) asm("" : "+x"(vec0), "+x"(vec1)) 90 91 /* Note that these vectorized functions may assume len >= 256. */ 92 93 static bool __attribute__((target("sse2"))) 94 buffer_zero_sse2(const void *buf, size_t len) 95 { 96 /* Unaligned loads at head/tail. */ 97 __m128i v = *(__m128i_u *)(buf); 98 __m128i w = *(__m128i_u *)(buf + len - 16); 99 /* Align head/tail to 16-byte boundaries. */ 100 const __m128i *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); 101 const __m128i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); 102 __m128i zero = { 0 }; 103 104 /* Collect a partial block at tail end. */ 105 v |= e[-1]; w |= e[-2]; 106 SSE_REASSOC_BARRIER(v, w); 107 v |= e[-3]; w |= e[-4]; 108 SSE_REASSOC_BARRIER(v, w); 109 v |= e[-5]; w |= e[-6]; 110 SSE_REASSOC_BARRIER(v, w); 111 v |= e[-7]; v |= w; 112 113 /* 114 * Loop over complete 128-byte blocks. 115 * With the head and tail removed, e - p >= 14, so the loop 116 * must iterate at least once. 117 */ 118 do { 119 v = _mm_cmpeq_epi8(v, zero); 120 if (unlikely(_mm_movemask_epi8(v) != 0xFFFF)) { 121 return false; 122 } 123 v = p[0]; w = p[1]; 124 SSE_REASSOC_BARRIER(v, w); 125 v |= p[2]; w |= p[3]; 126 SSE_REASSOC_BARRIER(v, w); 127 v |= p[4]; w |= p[5]; 128 SSE_REASSOC_BARRIER(v, w); 129 v |= p[6]; w |= p[7]; 130 SSE_REASSOC_BARRIER(v, w); 131 v |= w; 132 p += 8; 133 } while (p < e - 7); 134 135 return _mm_movemask_epi8(_mm_cmpeq_epi8(v, zero)) == 0xFFFF; 136 } 137 138 #ifdef CONFIG_AVX2_OPT 139 static bool __attribute__((target("avx2"))) 140 buffer_zero_avx2(const void *buf, size_t len) 141 { 142 /* Unaligned loads at head/tail. */ 143 __m256i v = *(__m256i_u *)(buf); 144 __m256i w = *(__m256i_u *)(buf + len - 32); 145 /* Align head/tail to 32-byte boundaries. */ 146 const __m256i *p = QEMU_ALIGN_PTR_DOWN(buf + 32, 32); 147 const __m256i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 32); 148 __m256i zero = { 0 }; 149 150 /* Collect a partial block at tail end. */ 151 v |= e[-1]; w |= e[-2]; 152 SSE_REASSOC_BARRIER(v, w); 153 v |= e[-3]; w |= e[-4]; 154 SSE_REASSOC_BARRIER(v, w); 155 v |= e[-5]; w |= e[-6]; 156 SSE_REASSOC_BARRIER(v, w); 157 v |= e[-7]; v |= w; 158 159 /* Loop over complete 256-byte blocks. */ 160 for (; p < e - 7; p += 8) { 161 /* PTEST is not profitable here. */ 162 v = _mm256_cmpeq_epi8(v, zero); 163 if (unlikely(_mm256_movemask_epi8(v) != 0xFFFFFFFF)) { 164 return false; 165 } 166 v = p[0]; w = p[1]; 167 SSE_REASSOC_BARRIER(v, w); 168 v |= p[2]; w |= p[3]; 169 SSE_REASSOC_BARRIER(v, w); 170 v |= p[4]; w |= p[5]; 171 SSE_REASSOC_BARRIER(v, w); 172 v |= p[6]; w |= p[7]; 173 SSE_REASSOC_BARRIER(v, w); 174 v |= w; 175 } 176 177 return _mm256_movemask_epi8(_mm256_cmpeq_epi8(v, zero)) == 0xFFFFFFFF; 178 } 179 #endif /* CONFIG_AVX2_OPT */ 180 181 static biz_accel_fn const accel_table[] = { 182 buffer_is_zero_int_ge256, 183 buffer_zero_sse2, 184 #ifdef CONFIG_AVX2_OPT 185 buffer_zero_avx2, 186 #endif 187 }; 188 189 static unsigned best_accel(void) 190 { 191 unsigned info = cpuinfo_init(); 192 193 #ifdef CONFIG_AVX2_OPT 194 if (info & CPUINFO_AVX2) { 195 return 2; 196 } 197 #endif 198 return info & CPUINFO_SSE2 ? 1 : 0; 199 } 200 201 #elif defined(__aarch64__) && defined(__ARM_NEON) 202 #include <arm_neon.h> 203 204 /* 205 * Helper for preventing the compiler from reassociating 206 * chains of binary vector operations. 207 */ 208 #define REASSOC_BARRIER(vec0, vec1) asm("" : "+w"(vec0), "+w"(vec1)) 209 210 static bool buffer_is_zero_simd(const void *buf, size_t len) 211 { 212 uint32x4_t t0, t1, t2, t3; 213 214 /* Align head/tail to 16-byte boundaries. */ 215 const uint32x4_t *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); 216 const uint32x4_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); 217 218 /* Unaligned loads at head/tail. */ 219 t0 = vld1q_u32(buf) | vld1q_u32(buf + len - 16); 220 221 /* Collect a partial block at tail end. */ 222 t1 = e[-7] | e[-6]; 223 t2 = e[-5] | e[-4]; 224 t3 = e[-3] | e[-2]; 225 t0 |= e[-1]; 226 REASSOC_BARRIER(t0, t1); 227 REASSOC_BARRIER(t2, t3); 228 t0 |= t1; 229 t2 |= t3; 230 REASSOC_BARRIER(t0, t2); 231 t0 |= t2; 232 233 /* 234 * Loop over complete 128-byte blocks. 235 * With the head and tail removed, e - p >= 14, so the loop 236 * must iterate at least once. 237 */ 238 do { 239 /* 240 * Reduce via UMAXV. Whatever the actual result, 241 * it will only be zero if all input bytes are zero. 242 */ 243 if (unlikely(vmaxvq_u32(t0) != 0)) { 244 return false; 245 } 246 247 t0 = p[0] | p[1]; 248 t1 = p[2] | p[3]; 249 t2 = p[4] | p[5]; 250 t3 = p[6] | p[7]; 251 REASSOC_BARRIER(t0, t1); 252 REASSOC_BARRIER(t2, t3); 253 t0 |= t1; 254 t2 |= t3; 255 REASSOC_BARRIER(t0, t2); 256 t0 |= t2; 257 p += 8; 258 } while (p < e - 7); 259 260 return vmaxvq_u32(t0) == 0; 261 } 262 263 #define best_accel() 1 264 static biz_accel_fn const accel_table[] = { 265 buffer_is_zero_int_ge256, 266 buffer_is_zero_simd, 267 }; 268 #else 269 #define best_accel() 0 270 static biz_accel_fn const accel_table[1] = { 271 buffer_is_zero_int_ge256 272 }; 273 #endif 274 275 static biz_accel_fn buffer_is_zero_accel; 276 static unsigned accel_index; 277 278 bool buffer_is_zero_ool(const void *buf, size_t len) 279 { 280 if (unlikely(len == 0)) { 281 return true; 282 } 283 if (!buffer_is_zero_sample3(buf, len)) { 284 return false; 285 } 286 /* All bytes are covered for any len <= 3. */ 287 if (unlikely(len <= 3)) { 288 return true; 289 } 290 291 if (likely(len >= 256)) { 292 return buffer_is_zero_accel(buf, len); 293 } 294 return buffer_is_zero_int_lt256(buf, len); 295 } 296 297 bool buffer_is_zero_ge256(const void *buf, size_t len) 298 { 299 return buffer_is_zero_accel(buf, len); 300 } 301 302 bool test_buffer_is_zero_next_accel(void) 303 { 304 if (accel_index != 0) { 305 buffer_is_zero_accel = accel_table[--accel_index]; 306 return true; 307 } 308 return false; 309 } 310 311 static void __attribute__((constructor)) init_accel(void) 312 { 313 accel_index = best_accel(); 314 buffer_is_zero_accel = accel_table[accel_index]; 315 } 316