xref: /openbmc/qemu/util/bufferiszero.c (revision 4ea5fe99)
1 /*
2  * Simple C functions to supplement the C library
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
26 #include "qemu/bswap.h"
27 
28 static bool
29 buffer_zero_int(const void *buf, size_t len)
30 {
31     if (unlikely(len < 8)) {
32         /* For a very small buffer, simply accumulate all the bytes.  */
33         const unsigned char *p = buf;
34         const unsigned char *e = buf + len;
35         unsigned char t = 0;
36 
37         do {
38             t |= *p++;
39         } while (p < e);
40 
41         return t == 0;
42     } else {
43         /* Otherwise, use the unaligned memory access functions to
44            handle the beginning and end of the buffer, with a couple
45            of loops handling the middle aligned section.  */
46         uint64_t t = ldq_he_p(buf);
47         const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
48         const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
49 
50         for (; p + 8 <= e; p += 8) {
51             __builtin_prefetch(p + 8);
52             if (t) {
53                 return false;
54             }
55             t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
56         }
57         while (p < e) {
58             t |= *p++;
59         }
60         t |= ldq_he_p(buf + len - 8);
61 
62         return t == 0;
63     }
64 }
65 
66 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
67 #include <immintrin.h>
68 
69 /* Note that each of these vectorized functions require len >= 64.  */
70 
71 static bool __attribute__((target("sse2")))
72 buffer_zero_sse2(const void *buf, size_t len)
73 {
74     __m128i t = _mm_loadu_si128(buf);
75     __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
76     __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
77     __m128i zero = _mm_setzero_si128();
78 
79     /* Loop over 16-byte aligned blocks of 64.  */
80     while (likely(p <= e)) {
81         __builtin_prefetch(p);
82         t = _mm_cmpeq_epi8(t, zero);
83         if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
84             return false;
85         }
86         t = p[-4] | p[-3] | p[-2] | p[-1];
87         p += 4;
88     }
89 
90     /* Finish the aligned tail.  */
91     t |= e[-3];
92     t |= e[-2];
93     t |= e[-1];
94 
95     /* Finish the unaligned tail.  */
96     t |= _mm_loadu_si128(buf + len - 16);
97 
98     return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
99 }
100 
101 #ifdef CONFIG_AVX2_OPT
102 static bool __attribute__((target("sse4")))
103 buffer_zero_sse4(const void *buf, size_t len)
104 {
105     __m128i t = _mm_loadu_si128(buf);
106     __m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
107     __m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
108 
109     /* Loop over 16-byte aligned blocks of 64.  */
110     while (likely(p <= e)) {
111         __builtin_prefetch(p);
112         if (unlikely(!_mm_testz_si128(t, t))) {
113             return false;
114         }
115         t = p[-4] | p[-3] | p[-2] | p[-1];
116         p += 4;
117     }
118 
119     /* Finish the aligned tail.  */
120     t |= e[-3];
121     t |= e[-2];
122     t |= e[-1];
123 
124     /* Finish the unaligned tail.  */
125     t |= _mm_loadu_si128(buf + len - 16);
126 
127     return _mm_testz_si128(t, t);
128 }
129 
130 static bool __attribute__((target("avx2")))
131 buffer_zero_avx2(const void *buf, size_t len)
132 {
133     /* Begin with an unaligned head of 32 bytes.  */
134     __m256i t = _mm256_loadu_si256(buf);
135     __m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
136     __m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
137 
138     /* Loop over 32-byte aligned blocks of 128.  */
139     while (p <= e) {
140         __builtin_prefetch(p);
141         if (unlikely(!_mm256_testz_si256(t, t))) {
142             return false;
143         }
144         t = p[-4] | p[-3] | p[-2] | p[-1];
145         p += 4;
146     } ;
147 
148     /* Finish the last block of 128 unaligned.  */
149     t |= _mm256_loadu_si256(buf + len - 4 * 32);
150     t |= _mm256_loadu_si256(buf + len - 3 * 32);
151     t |= _mm256_loadu_si256(buf + len - 2 * 32);
152     t |= _mm256_loadu_si256(buf + len - 1 * 32);
153 
154     return _mm256_testz_si256(t, t);
155 }
156 #endif /* CONFIG_AVX2_OPT */
157 
158 #ifdef CONFIG_AVX512F_OPT
159 static bool __attribute__((target("avx512f")))
160 buffer_zero_avx512(const void *buf, size_t len)
161 {
162     /* Begin with an unaligned head of 64 bytes.  */
163     __m512i t = _mm512_loadu_si512(buf);
164     __m512i *p = (__m512i *)(((uintptr_t)buf + 5 * 64) & -64);
165     __m512i *e = (__m512i *)(((uintptr_t)buf + len) & -64);
166 
167     /* Loop over 64-byte aligned blocks of 256.  */
168     while (p <= e) {
169         __builtin_prefetch(p);
170         if (unlikely(_mm512_test_epi64_mask(t, t))) {
171             return false;
172         }
173         t = p[-4] | p[-3] | p[-2] | p[-1];
174         p += 4;
175     }
176 
177     t |= _mm512_loadu_si512(buf + len - 4 * 64);
178     t |= _mm512_loadu_si512(buf + len - 3 * 64);
179     t |= _mm512_loadu_si512(buf + len - 2 * 64);
180     t |= _mm512_loadu_si512(buf + len - 1 * 64);
181 
182     return !_mm512_test_epi64_mask(t, t);
183 
184 }
185 #endif /* CONFIG_AVX512F_OPT */
186 
187 
188 /* Note that for test_buffer_is_zero_next_accel, the most preferred
189  * ISA must have the least significant bit.
190  */
191 #define CACHE_AVX512F 1
192 #define CACHE_AVX2    2
193 #define CACHE_SSE4    4
194 #define CACHE_SSE2    8
195 
196 /* Make sure that these variables are appropriately initialized when
197  * SSE2 is enabled on the compiler command-line, but the compiler is
198  * too old to support CONFIG_AVX2_OPT.
199  */
200 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
201 # define INIT_CACHE 0
202 # define INIT_ACCEL buffer_zero_int
203 #else
204 # ifndef __SSE2__
205 #  error "ISA selection confusion"
206 # endif
207 # define INIT_CACHE CACHE_SSE2
208 # define INIT_ACCEL buffer_zero_sse2
209 #endif
210 
211 static unsigned cpuid_cache = INIT_CACHE;
212 static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
213 static int length_to_accel = 64;
214 
215 static void init_accel(unsigned cache)
216 {
217     bool (*fn)(const void *, size_t) = buffer_zero_int;
218     if (cache & CACHE_SSE2) {
219         fn = buffer_zero_sse2;
220         length_to_accel = 64;
221     }
222 #ifdef CONFIG_AVX2_OPT
223     if (cache & CACHE_SSE4) {
224         fn = buffer_zero_sse4;
225         length_to_accel = 64;
226     }
227     if (cache & CACHE_AVX2) {
228         fn = buffer_zero_avx2;
229         length_to_accel = 128;
230     }
231 #endif
232 #ifdef CONFIG_AVX512F_OPT
233     if (cache & CACHE_AVX512F) {
234         fn = buffer_zero_avx512;
235         length_to_accel = 256;
236     }
237 #endif
238     buffer_accel = fn;
239 }
240 
241 #if defined(CONFIG_AVX512F_OPT) || defined(CONFIG_AVX2_OPT)
242 #include "qemu/cpuid.h"
243 
244 static void __attribute__((constructor)) init_cpuid_cache(void)
245 {
246     unsigned max = __get_cpuid_max(0, NULL);
247     int a, b, c, d;
248     unsigned cache = 0;
249 
250     if (max >= 1) {
251         __cpuid(1, a, b, c, d);
252         if (d & bit_SSE2) {
253             cache |= CACHE_SSE2;
254         }
255         if (c & bit_SSE4_1) {
256             cache |= CACHE_SSE4;
257         }
258 
259         /* We must check that AVX is not just available, but usable.  */
260         if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
261             unsigned bv = xgetbv_low(0);
262             __cpuid_count(7, 0, a, b, c, d);
263             if ((bv & 0x6) == 0x6 && (b & bit_AVX2)) {
264                 cache |= CACHE_AVX2;
265             }
266             /* 0xe6:
267             *  XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15
268             *                    and ZMM16-ZMM31 state are enabled by OS)
269             *  XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS)
270             */
271             if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512F)) {
272                 cache |= CACHE_AVX512F;
273             }
274         }
275     }
276     cpuid_cache = cache;
277     init_accel(cache);
278 }
279 #endif /* CONFIG_AVX2_OPT */
280 
281 bool test_buffer_is_zero_next_accel(void)
282 {
283     /* If no bits set, we just tested buffer_zero_int, and there
284        are no more acceleration options to test.  */
285     if (cpuid_cache == 0) {
286         return false;
287     }
288     /* Disable the accelerator we used before and select a new one.  */
289     cpuid_cache &= cpuid_cache - 1;
290     init_accel(cpuid_cache);
291     return true;
292 }
293 
294 static bool select_accel_fn(const void *buf, size_t len)
295 {
296     if (likely(len >= length_to_accel)) {
297         return buffer_accel(buf, len);
298     }
299     return buffer_zero_int(buf, len);
300 }
301 
302 #else
303 #define select_accel_fn  buffer_zero_int
304 bool test_buffer_is_zero_next_accel(void)
305 {
306     return false;
307 }
308 #endif
309 
310 /*
311  * Checks if a buffer is all zeroes
312  */
313 bool buffer_is_zero(const void *buf, size_t len)
314 {
315     if (unlikely(len == 0)) {
316         return true;
317     }
318 
319     /* Fetch the beginning of the buffer while we select the accelerator.  */
320     __builtin_prefetch(buf);
321 
322     /* Use an optimized zero check if possible.  Note that this also
323        includes a check for an unrolled loop over 64-bit integers.  */
324     return select_accel_fn(buf, len);
325 }
326