1 /* 2 * Bitmap Module 3 * 4 * Stolen from linux/src/lib/bitmap.c 5 * 6 * Copyright (C) 2010 Corentin Chary 7 * 8 * This source code is licensed under the GNU General Public License, 9 * Version 2. 10 */ 11 12 #include "qemu/bitops.h" 13 #include "qemu/bitmap.h" 14 #include "qemu/atomic.h" 15 16 /* 17 * bitmaps provide an array of bits, implemented using an 18 * array of unsigned longs. The number of valid bits in a 19 * given bitmap does _not_ need to be an exact multiple of 20 * BITS_PER_LONG. 21 * 22 * The possible unused bits in the last, partially used word 23 * of a bitmap are 'don't care'. The implementation makes 24 * no particular effort to keep them zero. It ensures that 25 * their value will not affect the results of any operation. 26 * The bitmap operations that return Boolean (bitmap_empty, 27 * for example) or scalar (bitmap_weight, for example) results 28 * carefully filter out these unused bits from impacting their 29 * results. 30 * 31 * These operations actually hold to a slightly stronger rule: 32 * if you don't input any bitmaps to these ops that have some 33 * unused bits set, then they won't output any set unused bits 34 * in output bitmaps. 35 * 36 * The byte ordering of bitmaps is more natural on little 37 * endian architectures. 38 */ 39 40 int slow_bitmap_empty(const unsigned long *bitmap, long bits) 41 { 42 long k, lim = bits/BITS_PER_LONG; 43 44 for (k = 0; k < lim; ++k) { 45 if (bitmap[k]) { 46 return 0; 47 } 48 } 49 if (bits % BITS_PER_LONG) { 50 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { 51 return 0; 52 } 53 } 54 55 return 1; 56 } 57 58 int slow_bitmap_full(const unsigned long *bitmap, long bits) 59 { 60 long k, lim = bits/BITS_PER_LONG; 61 62 for (k = 0; k < lim; ++k) { 63 if (~bitmap[k]) { 64 return 0; 65 } 66 } 67 68 if (bits % BITS_PER_LONG) { 69 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { 70 return 0; 71 } 72 } 73 74 return 1; 75 } 76 77 int slow_bitmap_equal(const unsigned long *bitmap1, 78 const unsigned long *bitmap2, long bits) 79 { 80 long k, lim = bits/BITS_PER_LONG; 81 82 for (k = 0; k < lim; ++k) { 83 if (bitmap1[k] != bitmap2[k]) { 84 return 0; 85 } 86 } 87 88 if (bits % BITS_PER_LONG) { 89 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { 90 return 0; 91 } 92 } 93 94 return 1; 95 } 96 97 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src, 98 long bits) 99 { 100 long k, lim = bits/BITS_PER_LONG; 101 102 for (k = 0; k < lim; ++k) { 103 dst[k] = ~src[k]; 104 } 105 106 if (bits % BITS_PER_LONG) { 107 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); 108 } 109 } 110 111 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 112 const unsigned long *bitmap2, long bits) 113 { 114 long k; 115 long nr = BITS_TO_LONGS(bits); 116 unsigned long result = 0; 117 118 for (k = 0; k < nr; k++) { 119 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 120 } 121 return result != 0; 122 } 123 124 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 125 const unsigned long *bitmap2, long bits) 126 { 127 long k; 128 long nr = BITS_TO_LONGS(bits); 129 130 for (k = 0; k < nr; k++) { 131 dst[k] = bitmap1[k] | bitmap2[k]; 132 } 133 } 134 135 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 136 const unsigned long *bitmap2, long bits) 137 { 138 long k; 139 long nr = BITS_TO_LONGS(bits); 140 141 for (k = 0; k < nr; k++) { 142 dst[k] = bitmap1[k] ^ bitmap2[k]; 143 } 144 } 145 146 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 147 const unsigned long *bitmap2, long bits) 148 { 149 long k; 150 long nr = BITS_TO_LONGS(bits); 151 unsigned long result = 0; 152 153 for (k = 0; k < nr; k++) { 154 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 155 } 156 return result != 0; 157 } 158 159 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) 160 161 void bitmap_set(unsigned long *map, long start, long nr) 162 { 163 unsigned long *p = map + BIT_WORD(start); 164 const long size = start + nr; 165 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 166 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 167 168 while (nr - bits_to_set >= 0) { 169 *p |= mask_to_set; 170 nr -= bits_to_set; 171 bits_to_set = BITS_PER_LONG; 172 mask_to_set = ~0UL; 173 p++; 174 } 175 if (nr) { 176 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 177 *p |= mask_to_set; 178 } 179 } 180 181 void bitmap_set_atomic(unsigned long *map, long start, long nr) 182 { 183 unsigned long *p = map + BIT_WORD(start); 184 const long size = start + nr; 185 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 186 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 187 188 /* First word */ 189 if (nr - bits_to_set > 0) { 190 atomic_or(p, mask_to_set); 191 nr -= bits_to_set; 192 bits_to_set = BITS_PER_LONG; 193 mask_to_set = ~0UL; 194 p++; 195 } 196 197 /* Full words */ 198 if (bits_to_set == BITS_PER_LONG) { 199 while (nr >= BITS_PER_LONG) { 200 *p = ~0UL; 201 nr -= BITS_PER_LONG; 202 p++; 203 } 204 } 205 206 /* Last word */ 207 if (nr) { 208 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 209 atomic_or(p, mask_to_set); 210 } else { 211 /* If we avoided the full barrier in atomic_or(), issue a 212 * barrier to account for the assignments in the while loop. 213 */ 214 smp_mb(); 215 } 216 } 217 218 void bitmap_clear(unsigned long *map, long start, long nr) 219 { 220 unsigned long *p = map + BIT_WORD(start); 221 const long size = start + nr; 222 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 223 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 224 225 while (nr - bits_to_clear >= 0) { 226 *p &= ~mask_to_clear; 227 nr -= bits_to_clear; 228 bits_to_clear = BITS_PER_LONG; 229 mask_to_clear = ~0UL; 230 p++; 231 } 232 if (nr) { 233 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 234 *p &= ~mask_to_clear; 235 } 236 } 237 238 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr) 239 { 240 unsigned long *p = map + BIT_WORD(start); 241 const long size = start + nr; 242 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 243 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 244 unsigned long dirty = 0; 245 unsigned long old_bits; 246 247 /* First word */ 248 if (nr - bits_to_clear > 0) { 249 old_bits = atomic_fetch_and(p, ~mask_to_clear); 250 dirty |= old_bits & mask_to_clear; 251 nr -= bits_to_clear; 252 bits_to_clear = BITS_PER_LONG; 253 mask_to_clear = ~0UL; 254 p++; 255 } 256 257 /* Full words */ 258 if (bits_to_clear == BITS_PER_LONG) { 259 while (nr >= BITS_PER_LONG) { 260 if (*p) { 261 old_bits = atomic_xchg(p, 0); 262 dirty |= old_bits; 263 } 264 nr -= BITS_PER_LONG; 265 p++; 266 } 267 } 268 269 /* Last word */ 270 if (nr) { 271 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 272 old_bits = atomic_fetch_and(p, ~mask_to_clear); 273 dirty |= old_bits & mask_to_clear; 274 } else { 275 if (!dirty) { 276 smp_mb(); 277 } 278 } 279 280 return dirty != 0; 281 } 282 283 #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask)) 284 285 /** 286 * bitmap_find_next_zero_area - find a contiguous aligned zero area 287 * @map: The address to base the search on 288 * @size: The bitmap size in bits 289 * @start: The bitnumber to start searching at 290 * @nr: The number of zeroed bits we're looking for 291 * @align_mask: Alignment mask for zero area 292 * 293 * The @align_mask should be one less than a power of 2; the effect is that 294 * the bit offset of all zero areas this function finds is multiples of that 295 * power of 2. A @align_mask of 0 means no alignment is required. 296 */ 297 unsigned long bitmap_find_next_zero_area(unsigned long *map, 298 unsigned long size, 299 unsigned long start, 300 unsigned long nr, 301 unsigned long align_mask) 302 { 303 unsigned long index, end, i; 304 again: 305 index = find_next_zero_bit(map, size, start); 306 307 /* Align allocation */ 308 index = ALIGN_MASK(index, align_mask); 309 310 end = index + nr; 311 if (end > size) { 312 return end; 313 } 314 i = find_next_bit(map, end, index); 315 if (i < end) { 316 start = i + 1; 317 goto again; 318 } 319 return index; 320 } 321 322 int slow_bitmap_intersects(const unsigned long *bitmap1, 323 const unsigned long *bitmap2, long bits) 324 { 325 long k, lim = bits/BITS_PER_LONG; 326 327 for (k = 0; k < lim; ++k) { 328 if (bitmap1[k] & bitmap2[k]) { 329 return 1; 330 } 331 } 332 333 if (bits % BITS_PER_LONG) { 334 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { 335 return 1; 336 } 337 } 338 return 0; 339 } 340