xref: /openbmc/qemu/util/bitmap.c (revision b8bcf811)
1 /*
2  * Bitmap Module
3  *
4  * Stolen from linux/src/lib/bitmap.c
5  *
6  * Copyright (C) 2010 Corentin Chary
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.
10  */
11 
12 #include "qemu/bitops.h"
13 #include "qemu/bitmap.h"
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.
37  */
38 
39 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
40 {
41     long k, lim = bits/BITS_PER_LONG;
42 
43     for (k = 0; k < lim; ++k) {
44         if (bitmap[k]) {
45             return 0;
46         }
47     }
48     if (bits % BITS_PER_LONG) {
49         if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
50             return 0;
51         }
52     }
53 
54     return 1;
55 }
56 
57 int slow_bitmap_full(const unsigned long *bitmap, long bits)
58 {
59     long k, lim = bits/BITS_PER_LONG;
60 
61     for (k = 0; k < lim; ++k) {
62         if (~bitmap[k]) {
63             return 0;
64         }
65     }
66 
67     if (bits % BITS_PER_LONG) {
68         if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
69             return 0;
70         }
71     }
72 
73     return 1;
74 }
75 
76 int slow_bitmap_equal(const unsigned long *bitmap1,
77                       const unsigned long *bitmap2, long bits)
78 {
79     long k, lim = bits/BITS_PER_LONG;
80 
81     for (k = 0; k < lim; ++k) {
82         if (bitmap1[k] != bitmap2[k]) {
83             return 0;
84         }
85     }
86 
87     if (bits % BITS_PER_LONG) {
88         if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
89             return 0;
90         }
91     }
92 
93     return 1;
94 }
95 
96 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
97                             long bits)
98 {
99     long k, lim = bits/BITS_PER_LONG;
100 
101     for (k = 0; k < lim; ++k) {
102         dst[k] = ~src[k];
103     }
104 
105     if (bits % BITS_PER_LONG) {
106         dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
107     }
108 }
109 
110 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
111                     const unsigned long *bitmap2, long bits)
112 {
113     long k;
114     long nr = BITS_TO_LONGS(bits);
115     unsigned long result = 0;
116 
117     for (k = 0; k < nr; k++) {
118         result |= (dst[k] = bitmap1[k] & bitmap2[k]);
119     }
120     return result != 0;
121 }
122 
123 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
124                     const unsigned long *bitmap2, long bits)
125 {
126     long k;
127     long nr = BITS_TO_LONGS(bits);
128 
129     for (k = 0; k < nr; k++) {
130         dst[k] = bitmap1[k] | bitmap2[k];
131     }
132 }
133 
134 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
135                      const unsigned long *bitmap2, long bits)
136 {
137     long k;
138     long nr = BITS_TO_LONGS(bits);
139 
140     for (k = 0; k < nr; k++) {
141         dst[k] = bitmap1[k] ^ bitmap2[k];
142     }
143 }
144 
145 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
146                        const unsigned long *bitmap2, long bits)
147 {
148     long k;
149     long nr = BITS_TO_LONGS(bits);
150     unsigned long result = 0;
151 
152     for (k = 0; k < nr; k++) {
153         result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
154     }
155     return result != 0;
156 }
157 
158 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
159 
160 void bitmap_set(unsigned long *map, long start, long nr)
161 {
162     unsigned long *p = map + BIT_WORD(start);
163     const long size = start + nr;
164     int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
165     unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
166 
167     while (nr - bits_to_set >= 0) {
168         *p |= mask_to_set;
169         nr -= bits_to_set;
170         bits_to_set = BITS_PER_LONG;
171         mask_to_set = ~0UL;
172         p++;
173     }
174     if (nr) {
175         mask_to_set &= BITMAP_LAST_WORD_MASK(size);
176         *p |= mask_to_set;
177     }
178 }
179 
180 void bitmap_clear(unsigned long *map, long start, long nr)
181 {
182     unsigned long *p = map + BIT_WORD(start);
183     const long size = start + nr;
184     int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
185     unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
186 
187     while (nr - bits_to_clear >= 0) {
188         *p &= ~mask_to_clear;
189         nr -= bits_to_clear;
190         bits_to_clear = BITS_PER_LONG;
191         mask_to_clear = ~0UL;
192         p++;
193     }
194     if (nr) {
195         mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
196         *p &= ~mask_to_clear;
197     }
198 }
199 
200 #define ALIGN_MASK(x,mask)      (((x)+(mask))&~(mask))
201 
202 /**
203  * bitmap_find_next_zero_area - find a contiguous aligned zero area
204  * @map: The address to base the search on
205  * @size: The bitmap size in bits
206  * @start: The bitnumber to start searching at
207  * @nr: The number of zeroed bits we're looking for
208  * @align_mask: Alignment mask for zero area
209  *
210  * The @align_mask should be one less than a power of 2; the effect is that
211  * the bit offset of all zero areas this function finds is multiples of that
212  * power of 2. A @align_mask of 0 means no alignment is required.
213  */
214 unsigned long bitmap_find_next_zero_area(unsigned long *map,
215                                          unsigned long size,
216                                          unsigned long start,
217                                          unsigned long nr,
218                                          unsigned long align_mask)
219 {
220     unsigned long index, end, i;
221 again:
222     index = find_next_zero_bit(map, size, start);
223 
224     /* Align allocation */
225     index = ALIGN_MASK(index, align_mask);
226 
227     end = index + nr;
228     if (end > size) {
229         return end;
230     }
231     i = find_next_bit(map, end, index);
232     if (i < end) {
233         start = i + 1;
234         goto again;
235     }
236     return index;
237 }
238 
239 int slow_bitmap_intersects(const unsigned long *bitmap1,
240                            const unsigned long *bitmap2, long bits)
241 {
242     long k, lim = bits/BITS_PER_LONG;
243 
244     for (k = 0; k < lim; ++k) {
245         if (bitmap1[k] & bitmap2[k]) {
246             return 1;
247         }
248     }
249 
250     if (bits % BITS_PER_LONG) {
251         if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
252             return 1;
253         }
254     }
255     return 0;
256 }
257