1 /* 2 * QEMU VNC display driver: tight encoding 3 * 4 * From libvncserver/libvncserver/tight.c 5 * Copyright (C) 2000, 2001 Const Kaplinsky. All Rights Reserved. 6 * Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved. 7 * 8 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 31 /* This needs to be before jpeglib.h line because of conflict with 32 INT32 definitions between jmorecfg.h (included by jpeglib.h) and 33 Win32 basetsd.h (included by windows.h). */ 34 35 #ifdef CONFIG_VNC_PNG 36 /* The following define is needed by pngconf.h. Otherwise it won't compile, 37 because setjmp.h was already included by qemu-common.h. */ 38 #define PNG_SKIP_SETJMP_CHECK 39 #include <png.h> 40 #endif 41 #ifdef CONFIG_VNC_JPEG 42 #include <jpeglib.h> 43 #endif 44 45 #include "qemu/bswap.h" 46 #include "vnc.h" 47 #include "vnc-enc-tight.h" 48 #include "vnc-palette.h" 49 50 /* Compression level stuff. The following array contains various 51 encoder parameters for each of 10 compression levels (0..9). 52 Last three parameters correspond to JPEG quality levels (0..9). */ 53 54 static const struct { 55 int max_rect_size, max_rect_width; 56 int mono_min_rect_size, gradient_min_rect_size; 57 int idx_zlib_level, mono_zlib_level, raw_zlib_level, gradient_zlib_level; 58 int gradient_threshold, gradient_threshold24; 59 int idx_max_colors_divisor; 60 int jpeg_quality, jpeg_threshold, jpeg_threshold24; 61 } tight_conf[] = { 62 { 512, 32, 6, 65536, 0, 0, 0, 0, 0, 0, 4, 5, 10000, 23000 }, 63 { 2048, 128, 6, 65536, 1, 1, 1, 0, 0, 0, 8, 10, 8000, 18000 }, 64 { 6144, 256, 8, 65536, 3, 3, 2, 0, 0, 0, 24, 15, 6500, 15000 }, 65 { 10240, 1024, 12, 65536, 5, 5, 3, 0, 0, 0, 32, 25, 5000, 12000 }, 66 { 16384, 2048, 12, 65536, 6, 6, 4, 0, 0, 0, 32, 37, 4000, 10000 }, 67 { 32768, 2048, 12, 4096, 7, 7, 5, 4, 150, 380, 32, 50, 3000, 8000 }, 68 { 65536, 2048, 16, 4096, 7, 7, 6, 4, 170, 420, 48, 60, 2000, 5000 }, 69 { 65536, 2048, 16, 4096, 8, 8, 7, 5, 180, 450, 64, 70, 1000, 2500 }, 70 { 65536, 2048, 32, 8192, 9, 9, 8, 6, 190, 475, 64, 75, 500, 1200 }, 71 { 65536, 2048, 32, 8192, 9, 9, 9, 6, 200, 500, 96, 80, 200, 500 } 72 }; 73 74 75 static int tight_send_framebuffer_update(VncState *vs, int x, int y, 76 int w, int h); 77 78 #ifdef CONFIG_VNC_JPEG 79 static const struct { 80 double jpeg_freq_min; /* Don't send JPEG if the freq is bellow */ 81 double jpeg_freq_threshold; /* Always send JPEG if the freq is above */ 82 int jpeg_idx; /* Allow indexed JPEG */ 83 int jpeg_full; /* Allow full color JPEG */ 84 } tight_jpeg_conf[] = { 85 { 0, 8, 1, 1 }, 86 { 0, 8, 1, 1 }, 87 { 0, 8, 1, 1 }, 88 { 0, 8, 1, 1 }, 89 { 0, 10, 1, 1 }, 90 { 0.1, 10, 1, 1 }, 91 { 0.2, 10, 1, 1 }, 92 { 0.3, 12, 0, 0 }, 93 { 0.4, 14, 0, 0 }, 94 { 0.5, 16, 0, 0 }, 95 }; 96 #endif 97 98 #ifdef CONFIG_VNC_PNG 99 static const struct { 100 int png_zlib_level, png_filters; 101 } tight_png_conf[] = { 102 { 0, PNG_NO_FILTERS }, 103 { 1, PNG_NO_FILTERS }, 104 { 2, PNG_NO_FILTERS }, 105 { 3, PNG_NO_FILTERS }, 106 { 4, PNG_NO_FILTERS }, 107 { 5, PNG_ALL_FILTERS }, 108 { 6, PNG_ALL_FILTERS }, 109 { 7, PNG_ALL_FILTERS }, 110 { 8, PNG_ALL_FILTERS }, 111 { 9, PNG_ALL_FILTERS }, 112 }; 113 114 static int send_png_rect(VncState *vs, int x, int y, int w, int h, 115 VncPalette *palette); 116 117 static bool tight_can_send_png_rect(VncState *vs, int w, int h) 118 { 119 if (vs->tight->type != VNC_ENCODING_TIGHT_PNG) { 120 return false; 121 } 122 123 if (surface_bytes_per_pixel(vs->vd->ds) == 1 || 124 vs->client_pf.bytes_per_pixel == 1) { 125 return false; 126 } 127 128 return true; 129 } 130 #endif 131 132 /* 133 * Code to guess if given rectangle is suitable for smooth image 134 * compression (by applying "gradient" filter or JPEG coder). 135 */ 136 137 static unsigned int 138 tight_detect_smooth_image24(VncState *vs, int w, int h) 139 { 140 int off; 141 int x, y, d, dx; 142 unsigned int c; 143 unsigned int stats[256]; 144 int pixels = 0; 145 int pix, left[3]; 146 unsigned int errors; 147 unsigned char *buf = vs->tight->tight.buffer; 148 149 /* 150 * If client is big-endian, color samples begin from the second 151 * byte (offset 1) of a 32-bit pixel value. 152 */ 153 off = vs->client_be; 154 155 memset(stats, 0, sizeof (stats)); 156 157 for (y = 0, x = 0; y < h && x < w;) { 158 for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; 159 d++) { 160 for (c = 0; c < 3; c++) { 161 left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF; 162 } 163 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) { 164 for (c = 0; c < 3; c++) { 165 pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF; 166 stats[abs(pix - left[c])]++; 167 left[c] = pix; 168 } 169 pixels++; 170 } 171 } 172 if (w > h) { 173 x += h; 174 y = 0; 175 } else { 176 x = 0; 177 y += w; 178 } 179 } 180 181 if (pixels == 0) { 182 return 0; 183 } 184 185 /* 95% smooth or more ... */ 186 if (stats[0] * 33 / pixels >= 95) { 187 return 0; 188 } 189 190 errors = 0; 191 for (c = 1; c < 8; c++) { 192 errors += stats[c] * (c * c); 193 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { 194 return 0; 195 } 196 } 197 for (; c < 256; c++) { 198 errors += stats[c] * (c * c); 199 } 200 errors /= (pixels * 3 - stats[0]); 201 202 return errors; 203 } 204 205 #define DEFINE_DETECT_FUNCTION(bpp) \ 206 \ 207 static unsigned int \ 208 tight_detect_smooth_image##bpp(VncState *vs, int w, int h) { \ 209 bool endian; \ 210 uint##bpp##_t pix; \ 211 int max[3], shift[3]; \ 212 int x, y, d, dx; \ 213 unsigned int c; \ 214 unsigned int stats[256]; \ 215 int pixels = 0; \ 216 int sample, sum, left[3]; \ 217 unsigned int errors; \ 218 unsigned char *buf = vs->tight->tight.buffer; \ 219 \ 220 endian = 0; /* FIXME */ \ 221 \ 222 \ 223 max[0] = vs->client_pf.rmax; \ 224 max[1] = vs->client_pf.gmax; \ 225 max[2] = vs->client_pf.bmax; \ 226 shift[0] = vs->client_pf.rshift; \ 227 shift[1] = vs->client_pf.gshift; \ 228 shift[2] = vs->client_pf.bshift; \ 229 \ 230 memset(stats, 0, sizeof(stats)); \ 231 \ 232 y = 0, x = 0; \ 233 while (y < h && x < w) { \ 234 for (d = 0; d < h - y && \ 235 d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH; d++) { \ 236 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d]; \ 237 if (endian) { \ 238 pix = bswap##bpp(pix); \ 239 } \ 240 for (c = 0; c < 3; c++) { \ 241 left[c] = (int)(pix >> shift[c] & max[c]); \ 242 } \ 243 for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; \ 244 dx++) { \ 245 pix = ((uint##bpp##_t *)buf)[(y+d)*w+x+d+dx]; \ 246 if (endian) { \ 247 pix = bswap##bpp(pix); \ 248 } \ 249 sum = 0; \ 250 for (c = 0; c < 3; c++) { \ 251 sample = (int)(pix >> shift[c] & max[c]); \ 252 sum += abs(sample - left[c]); \ 253 left[c] = sample; \ 254 } \ 255 if (sum > 255) { \ 256 sum = 255; \ 257 } \ 258 stats[sum]++; \ 259 pixels++; \ 260 } \ 261 } \ 262 if (w > h) { \ 263 x += h; \ 264 y = 0; \ 265 } else { \ 266 x = 0; \ 267 y += w; \ 268 } \ 269 } \ 270 if (pixels == 0) { \ 271 return 0; \ 272 } \ 273 if ((stats[0] + stats[1]) * 100 / pixels >= 90) { \ 274 return 0; \ 275 } \ 276 \ 277 errors = 0; \ 278 for (c = 1; c < 8; c++) { \ 279 errors += stats[c] * (c * c); \ 280 if (stats[c] == 0 || stats[c] > stats[c-1] * 2) { \ 281 return 0; \ 282 } \ 283 } \ 284 for (; c < 256; c++) { \ 285 errors += stats[c] * (c * c); \ 286 } \ 287 errors /= (pixels - stats[0]); \ 288 \ 289 return errors; \ 290 } 291 292 DEFINE_DETECT_FUNCTION(16) 293 DEFINE_DETECT_FUNCTION(32) 294 295 static int 296 tight_detect_smooth_image(VncState *vs, int w, int h) 297 { 298 unsigned int errors; 299 int compression = vs->tight->compression; 300 int quality = vs->tight->quality; 301 302 if (!vs->vd->lossy) { 303 return 0; 304 } 305 306 if (surface_bytes_per_pixel(vs->vd->ds) == 1 || 307 vs->client_pf.bytes_per_pixel == 1 || 308 w < VNC_TIGHT_DETECT_MIN_WIDTH || h < VNC_TIGHT_DETECT_MIN_HEIGHT) { 309 return 0; 310 } 311 312 if (vs->tight->quality != (uint8_t)-1) { 313 if (w * h < VNC_TIGHT_JPEG_MIN_RECT_SIZE) { 314 return 0; 315 } 316 } else { 317 if (w * h < tight_conf[compression].gradient_min_rect_size) { 318 return 0; 319 } 320 } 321 322 if (vs->client_pf.bytes_per_pixel == 4) { 323 if (vs->tight->pixel24) { 324 errors = tight_detect_smooth_image24(vs, w, h); 325 if (vs->tight->quality != (uint8_t)-1) { 326 return (errors < tight_conf[quality].jpeg_threshold24); 327 } 328 return (errors < tight_conf[compression].gradient_threshold24); 329 } else { 330 errors = tight_detect_smooth_image32(vs, w, h); 331 } 332 } else { 333 errors = tight_detect_smooth_image16(vs, w, h); 334 } 335 if (quality != (uint8_t)-1) { 336 return (errors < tight_conf[quality].jpeg_threshold); 337 } 338 return (errors < tight_conf[compression].gradient_threshold); 339 } 340 341 /* 342 * Code to determine how many different colors used in rectangle. 343 */ 344 #define DEFINE_FILL_PALETTE_FUNCTION(bpp) \ 345 \ 346 static int \ 347 tight_fill_palette##bpp(VncState *vs, int x, int y, \ 348 int max, size_t count, \ 349 uint32_t *bg, uint32_t *fg, \ 350 VncPalette *palette) { \ 351 uint##bpp##_t *data; \ 352 uint##bpp##_t c0, c1, ci; \ 353 int i, n0, n1; \ 354 \ 355 data = (uint##bpp##_t *)vs->tight->tight.buffer; \ 356 \ 357 c0 = data[0]; \ 358 i = 1; \ 359 while (i < count && data[i] == c0) \ 360 i++; \ 361 if (i >= count) { \ 362 *bg = *fg = c0; \ 363 return 1; \ 364 } \ 365 \ 366 if (max < 2) { \ 367 return 0; \ 368 } \ 369 \ 370 n0 = i; \ 371 c1 = data[i]; \ 372 n1 = 0; \ 373 for (i++; i < count; i++) { \ 374 ci = data[i]; \ 375 if (ci == c0) { \ 376 n0++; \ 377 } else if (ci == c1) { \ 378 n1++; \ 379 } else \ 380 break; \ 381 } \ 382 if (i >= count) { \ 383 if (n0 > n1) { \ 384 *bg = (uint32_t)c0; \ 385 *fg = (uint32_t)c1; \ 386 } else { \ 387 *bg = (uint32_t)c1; \ 388 *fg = (uint32_t)c0; \ 389 } \ 390 return 2; \ 391 } \ 392 \ 393 if (max == 2) { \ 394 return 0; \ 395 } \ 396 \ 397 palette_init(palette, max, bpp); \ 398 palette_put(palette, c0); \ 399 palette_put(palette, c1); \ 400 palette_put(palette, ci); \ 401 \ 402 for (i++; i < count; i++) { \ 403 if (data[i] == ci) { \ 404 continue; \ 405 } else { \ 406 ci = data[i]; \ 407 if (!palette_put(palette, (uint32_t)ci)) { \ 408 return 0; \ 409 } \ 410 } \ 411 } \ 412 \ 413 return palette_size(palette); \ 414 } 415 416 DEFINE_FILL_PALETTE_FUNCTION(8) 417 DEFINE_FILL_PALETTE_FUNCTION(16) 418 DEFINE_FILL_PALETTE_FUNCTION(32) 419 420 static int tight_fill_palette(VncState *vs, int x, int y, 421 size_t count, uint32_t *bg, uint32_t *fg, 422 VncPalette *palette) 423 { 424 int max; 425 426 max = count / tight_conf[vs->tight->compression].idx_max_colors_divisor; 427 if (max < 2 && 428 count >= tight_conf[vs->tight->compression].mono_min_rect_size) { 429 max = 2; 430 } 431 if (max >= 256) { 432 max = 256; 433 } 434 435 switch (vs->client_pf.bytes_per_pixel) { 436 case 4: 437 return tight_fill_palette32(vs, x, y, max, count, bg, fg, palette); 438 case 2: 439 return tight_fill_palette16(vs, x, y, max, count, bg, fg, palette); 440 default: 441 max = 2; 442 return tight_fill_palette8(vs, x, y, max, count, bg, fg, palette); 443 } 444 return 0; 445 } 446 447 /* 448 * Converting truecolor samples into palette indices. 449 */ 450 #define DEFINE_IDX_ENCODE_FUNCTION(bpp) \ 451 \ 452 static void \ 453 tight_encode_indexed_rect##bpp(uint8_t *buf, int count, \ 454 VncPalette *palette) { \ 455 uint##bpp##_t *src; \ 456 uint##bpp##_t rgb; \ 457 int i, rep; \ 458 uint8_t idx; \ 459 \ 460 src = (uint##bpp##_t *) buf; \ 461 \ 462 for (i = 0; i < count; ) { \ 463 \ 464 rgb = *src++; \ 465 i++; \ 466 rep = 0; \ 467 while (i < count && *src == rgb) { \ 468 rep++, src++, i++; \ 469 } \ 470 idx = palette_idx(palette, rgb); \ 471 /* \ 472 * Should never happen, but don't break everything \ 473 * if it does, use the first color instead \ 474 */ \ 475 if (idx == (uint8_t)-1) { \ 476 idx = 0; \ 477 } \ 478 while (rep >= 0) { \ 479 *buf++ = idx; \ 480 rep--; \ 481 } \ 482 } \ 483 } 484 485 DEFINE_IDX_ENCODE_FUNCTION(16) 486 DEFINE_IDX_ENCODE_FUNCTION(32) 487 488 #define DEFINE_MONO_ENCODE_FUNCTION(bpp) \ 489 \ 490 static void \ 491 tight_encode_mono_rect##bpp(uint8_t *buf, int w, int h, \ 492 uint##bpp##_t bg, uint##bpp##_t fg) { \ 493 uint##bpp##_t *ptr; \ 494 unsigned int value, mask; \ 495 int aligned_width; \ 496 int x, y, bg_bits; \ 497 \ 498 ptr = (uint##bpp##_t *) buf; \ 499 aligned_width = w - w % 8; \ 500 \ 501 for (y = 0; y < h; y++) { \ 502 for (x = 0; x < aligned_width; x += 8) { \ 503 for (bg_bits = 0; bg_bits < 8; bg_bits++) { \ 504 if (*ptr++ != bg) { \ 505 break; \ 506 } \ 507 } \ 508 if (bg_bits == 8) { \ 509 *buf++ = 0; \ 510 continue; \ 511 } \ 512 mask = 0x80 >> bg_bits; \ 513 value = mask; \ 514 for (bg_bits++; bg_bits < 8; bg_bits++) { \ 515 mask >>= 1; \ 516 if (*ptr++ != bg) { \ 517 value |= mask; \ 518 } \ 519 } \ 520 *buf++ = (uint8_t)value; \ 521 } \ 522 \ 523 mask = 0x80; \ 524 value = 0; \ 525 if (x >= w) { \ 526 continue; \ 527 } \ 528 \ 529 for (; x < w; x++) { \ 530 if (*ptr++ != bg) { \ 531 value |= mask; \ 532 } \ 533 mask >>= 1; \ 534 } \ 535 *buf++ = (uint8_t)value; \ 536 } \ 537 } 538 539 DEFINE_MONO_ENCODE_FUNCTION(8) 540 DEFINE_MONO_ENCODE_FUNCTION(16) 541 DEFINE_MONO_ENCODE_FUNCTION(32) 542 543 /* 544 * ``Gradient'' filter for 24-bit color samples. 545 * Should be called only when redMax, greenMax and blueMax are 255. 546 * Color components assumed to be byte-aligned. 547 */ 548 549 static void 550 tight_filter_gradient24(VncState *vs, uint8_t *buf, int w, int h) 551 { 552 uint32_t *buf32; 553 uint32_t pix32; 554 int shift[3]; 555 int *prev; 556 int here[3], upper[3], left[3], upperleft[3]; 557 int prediction; 558 int x, y, c; 559 560 buf32 = (uint32_t *)buf; 561 memset(vs->tight->gradient.buffer, 0, w * 3 * sizeof(int)); 562 563 if (1 /* FIXME */) { 564 shift[0] = vs->client_pf.rshift; 565 shift[1] = vs->client_pf.gshift; 566 shift[2] = vs->client_pf.bshift; 567 } else { 568 shift[0] = 24 - vs->client_pf.rshift; 569 shift[1] = 24 - vs->client_pf.gshift; 570 shift[2] = 24 - vs->client_pf.bshift; 571 } 572 573 for (y = 0; y < h; y++) { 574 for (c = 0; c < 3; c++) { 575 upper[c] = 0; 576 here[c] = 0; 577 } 578 prev = (int *)vs->tight->gradient.buffer; 579 for (x = 0; x < w; x++) { 580 pix32 = *buf32++; 581 for (c = 0; c < 3; c++) { 582 upperleft[c] = upper[c]; 583 left[c] = here[c]; 584 upper[c] = *prev; 585 here[c] = (int)(pix32 >> shift[c] & 0xFF); 586 *prev++ = here[c]; 587 588 prediction = left[c] + upper[c] - upperleft[c]; 589 if (prediction < 0) { 590 prediction = 0; 591 } else if (prediction > 0xFF) { 592 prediction = 0xFF; 593 } 594 *buf++ = (char)(here[c] - prediction); 595 } 596 } 597 } 598 } 599 600 601 /* 602 * ``Gradient'' filter for other color depths. 603 */ 604 605 #define DEFINE_GRADIENT_FILTER_FUNCTION(bpp) \ 606 \ 607 static void \ 608 tight_filter_gradient##bpp(VncState *vs, uint##bpp##_t *buf, \ 609 int w, int h) { \ 610 uint##bpp##_t pix, diff; \ 611 bool endian; \ 612 int *prev; \ 613 int max[3], shift[3]; \ 614 int here[3], upper[3], left[3], upperleft[3]; \ 615 int prediction; \ 616 int x, y, c; \ 617 \ 618 memset(vs->tight->gradient.buffer, 0, w * 3 * sizeof(int)); \ 619 \ 620 endian = 0; /* FIXME */ \ 621 \ 622 max[0] = vs->client_pf.rmax; \ 623 max[1] = vs->client_pf.gmax; \ 624 max[2] = vs->client_pf.bmax; \ 625 shift[0] = vs->client_pf.rshift; \ 626 shift[1] = vs->client_pf.gshift; \ 627 shift[2] = vs->client_pf.bshift; \ 628 \ 629 for (y = 0; y < h; y++) { \ 630 for (c = 0; c < 3; c++) { \ 631 upper[c] = 0; \ 632 here[c] = 0; \ 633 } \ 634 prev = (int *)vs->tight->gradient.buffer; \ 635 for (x = 0; x < w; x++) { \ 636 pix = *buf; \ 637 if (endian) { \ 638 pix = bswap##bpp(pix); \ 639 } \ 640 diff = 0; \ 641 for (c = 0; c < 3; c++) { \ 642 upperleft[c] = upper[c]; \ 643 left[c] = here[c]; \ 644 upper[c] = *prev; \ 645 here[c] = (int)(pix >> shift[c] & max[c]); \ 646 *prev++ = here[c]; \ 647 \ 648 prediction = left[c] + upper[c] - upperleft[c]; \ 649 if (prediction < 0) { \ 650 prediction = 0; \ 651 } else if (prediction > max[c]) { \ 652 prediction = max[c]; \ 653 } \ 654 diff |= ((here[c] - prediction) & max[c]) \ 655 << shift[c]; \ 656 } \ 657 if (endian) { \ 658 diff = bswap##bpp(diff); \ 659 } \ 660 *buf++ = diff; \ 661 } \ 662 } \ 663 } 664 665 DEFINE_GRADIENT_FILTER_FUNCTION(16) 666 DEFINE_GRADIENT_FILTER_FUNCTION(32) 667 668 /* 669 * Check if a rectangle is all of the same color. If needSameColor is 670 * set to non-zero, then also check that its color equals to the 671 * *colorPtr value. The result is 1 if the test is successful, and in 672 * that case new color will be stored in *colorPtr. 673 */ 674 675 static bool 676 check_solid_tile32(VncState *vs, int x, int y, int w, int h, 677 uint32_t *color, bool samecolor) 678 { 679 VncDisplay *vd = vs->vd; 680 uint32_t *fbptr; 681 uint32_t c; 682 int dx, dy; 683 684 fbptr = vnc_server_fb_ptr(vd, x, y); 685 686 c = *fbptr; 687 if (samecolor && (uint32_t)c != *color) { 688 return false; 689 } 690 691 for (dy = 0; dy < h; dy++) { 692 for (dx = 0; dx < w; dx++) { 693 if (c != fbptr[dx]) { 694 return false; 695 } 696 } 697 fbptr = (uint32_t *) 698 ((uint8_t *)fbptr + vnc_server_fb_stride(vd)); 699 } 700 701 *color = (uint32_t)c; 702 return true; 703 } 704 705 static bool check_solid_tile(VncState *vs, int x, int y, int w, int h, 706 uint32_t* color, bool samecolor) 707 { 708 QEMU_BUILD_BUG_ON(VNC_SERVER_FB_BYTES != 4); 709 return check_solid_tile32(vs, x, y, w, h, color, samecolor); 710 } 711 712 static void find_best_solid_area(VncState *vs, int x, int y, int w, int h, 713 uint32_t color, int *w_ptr, int *h_ptr) 714 { 715 int dx, dy, dw, dh; 716 int w_prev; 717 int w_best = 0, h_best = 0; 718 719 w_prev = w; 720 721 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) { 722 723 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, y + h - dy); 724 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, w_prev); 725 726 if (!check_solid_tile(vs, x, dy, dw, dh, &color, true)) { 727 break; 728 } 729 730 for (dx = x + dw; dx < x + w_prev;) { 731 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, x + w_prev - dx); 732 733 if (!check_solid_tile(vs, dx, dy, dw, dh, &color, true)) { 734 break; 735 } 736 dx += dw; 737 } 738 739 w_prev = dx - x; 740 if (w_prev * (dy + dh - y) > w_best * h_best) { 741 w_best = w_prev; 742 h_best = dy + dh - y; 743 } 744 } 745 746 *w_ptr = w_best; 747 *h_ptr = h_best; 748 } 749 750 static void extend_solid_area(VncState *vs, int x, int y, int w, int h, 751 uint32_t color, int *x_ptr, int *y_ptr, 752 int *w_ptr, int *h_ptr) 753 { 754 int cx, cy; 755 756 /* Try to extend the area upwards. */ 757 for ( cy = *y_ptr - 1; 758 cy >= y && check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true); 759 cy-- ); 760 *h_ptr += *y_ptr - (cy + 1); 761 *y_ptr = cy + 1; 762 763 /* ... downwards. */ 764 for ( cy = *y_ptr + *h_ptr; 765 cy < y + h && 766 check_solid_tile(vs, *x_ptr, cy, *w_ptr, 1, &color, true); 767 cy++ ); 768 *h_ptr += cy - (*y_ptr + *h_ptr); 769 770 /* ... to the left. */ 771 for ( cx = *x_ptr - 1; 772 cx >= x && check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true); 773 cx-- ); 774 *w_ptr += *x_ptr - (cx + 1); 775 *x_ptr = cx + 1; 776 777 /* ... to the right. */ 778 for ( cx = *x_ptr + *w_ptr; 779 cx < x + w && 780 check_solid_tile(vs, cx, *y_ptr, 1, *h_ptr, &color, true); 781 cx++ ); 782 *w_ptr += cx - (*x_ptr + *w_ptr); 783 } 784 785 static int tight_init_stream(VncState *vs, int stream_id, 786 int level, int strategy) 787 { 788 z_streamp zstream = &vs->tight->stream[stream_id]; 789 790 if (zstream->opaque == NULL) { 791 int err; 792 793 VNC_DEBUG("VNC: TIGHT: initializing zlib stream %d\n", stream_id); 794 VNC_DEBUG("VNC: TIGHT: opaque = %p | vs = %p\n", zstream->opaque, vs); 795 zstream->zalloc = vnc_zlib_zalloc; 796 zstream->zfree = vnc_zlib_zfree; 797 798 err = deflateInit2(zstream, level, Z_DEFLATED, MAX_WBITS, 799 MAX_MEM_LEVEL, strategy); 800 801 if (err != Z_OK) { 802 fprintf(stderr, "VNC: error initializing zlib\n"); 803 return -1; 804 } 805 806 vs->tight->levels[stream_id] = level; 807 zstream->opaque = vs; 808 } 809 810 if (vs->tight->levels[stream_id] != level) { 811 if (deflateParams(zstream, level, strategy) != Z_OK) { 812 return -1; 813 } 814 vs->tight->levels[stream_id] = level; 815 } 816 return 0; 817 } 818 819 static void tight_send_compact_size(VncState *vs, size_t len) 820 { 821 int lpc = 0; 822 int bytes = 0; 823 char buf[3] = {0, 0, 0}; 824 825 buf[bytes++] = len & 0x7F; 826 if (len > 0x7F) { 827 buf[bytes-1] |= 0x80; 828 buf[bytes++] = (len >> 7) & 0x7F; 829 if (len > 0x3FFF) { 830 buf[bytes-1] |= 0x80; 831 buf[bytes++] = (len >> 14) & 0xFF; 832 } 833 } 834 for (lpc = 0; lpc < bytes; lpc++) { 835 vnc_write_u8(vs, buf[lpc]); 836 } 837 } 838 839 static int tight_compress_data(VncState *vs, int stream_id, size_t bytes, 840 int level, int strategy) 841 { 842 z_streamp zstream = &vs->tight->stream[stream_id]; 843 int previous_out; 844 845 if (bytes < VNC_TIGHT_MIN_TO_COMPRESS) { 846 vnc_write(vs, vs->tight->tight.buffer, vs->tight->tight.offset); 847 return bytes; 848 } 849 850 if (tight_init_stream(vs, stream_id, level, strategy)) { 851 return -1; 852 } 853 854 /* reserve memory in output buffer */ 855 buffer_reserve(&vs->tight->zlib, bytes + 64); 856 857 /* set pointers */ 858 zstream->next_in = vs->tight->tight.buffer; 859 zstream->avail_in = vs->tight->tight.offset; 860 zstream->next_out = vs->tight->zlib.buffer + vs->tight->zlib.offset; 861 zstream->avail_out = vs->tight->zlib.capacity - vs->tight->zlib.offset; 862 previous_out = zstream->avail_out; 863 zstream->data_type = Z_BINARY; 864 865 /* start encoding */ 866 if (deflate(zstream, Z_SYNC_FLUSH) != Z_OK) { 867 fprintf(stderr, "VNC: error during tight compression\n"); 868 return -1; 869 } 870 871 vs->tight->zlib.offset = vs->tight->zlib.capacity - zstream->avail_out; 872 /* ...how much data has actually been produced by deflate() */ 873 bytes = previous_out - zstream->avail_out; 874 875 tight_send_compact_size(vs, bytes); 876 vnc_write(vs, vs->tight->zlib.buffer, bytes); 877 878 buffer_reset(&vs->tight->zlib); 879 880 return bytes; 881 } 882 883 /* 884 * Subencoding implementations. 885 */ 886 static void tight_pack24(VncState *vs, uint8_t *buf, size_t count, size_t *ret) 887 { 888 uint8_t *buf8; 889 uint32_t pix; 890 int rshift, gshift, bshift; 891 892 buf8 = buf; 893 894 if (1 /* FIXME */) { 895 rshift = vs->client_pf.rshift; 896 gshift = vs->client_pf.gshift; 897 bshift = vs->client_pf.bshift; 898 } else { 899 rshift = 24 - vs->client_pf.rshift; 900 gshift = 24 - vs->client_pf.gshift; 901 bshift = 24 - vs->client_pf.bshift; 902 } 903 904 if (ret) { 905 *ret = count * 3; 906 } 907 908 while (count--) { 909 pix = ldl_he_p(buf8); 910 *buf++ = (char)(pix >> rshift); 911 *buf++ = (char)(pix >> gshift); 912 *buf++ = (char)(pix >> bshift); 913 buf8 += 4; 914 } 915 } 916 917 static int send_full_color_rect(VncState *vs, int x, int y, int w, int h) 918 { 919 int stream = 0; 920 ssize_t bytes; 921 922 #ifdef CONFIG_VNC_PNG 923 if (tight_can_send_png_rect(vs, w, h)) { 924 return send_png_rect(vs, x, y, w, h, NULL); 925 } 926 #endif 927 928 vnc_write_u8(vs, stream << 4); /* no flushing, no filter */ 929 930 if (vs->tight->pixel24) { 931 tight_pack24(vs, vs->tight->tight.buffer, w * h, 932 &vs->tight->tight.offset); 933 bytes = 3; 934 } else { 935 bytes = vs->client_pf.bytes_per_pixel; 936 } 937 938 bytes = tight_compress_data(vs, stream, w * h * bytes, 939 tight_conf[vs->tight->compression].raw_zlib_level, 940 Z_DEFAULT_STRATEGY); 941 942 return (bytes >= 0); 943 } 944 945 static int send_solid_rect(VncState *vs) 946 { 947 size_t bytes; 948 949 vnc_write_u8(vs, VNC_TIGHT_FILL << 4); /* no flushing, no filter */ 950 951 if (vs->tight->pixel24) { 952 tight_pack24(vs, vs->tight->tight.buffer, 1, &vs->tight->tight.offset); 953 bytes = 3; 954 } else { 955 bytes = vs->client_pf.bytes_per_pixel; 956 } 957 958 vnc_write(vs, vs->tight->tight.buffer, bytes); 959 return 1; 960 } 961 962 static int send_mono_rect(VncState *vs, int x, int y, 963 int w, int h, uint32_t bg, uint32_t fg) 964 { 965 ssize_t bytes; 966 int stream = 1; 967 int level = tight_conf[vs->tight->compression].mono_zlib_level; 968 969 #ifdef CONFIG_VNC_PNG 970 if (tight_can_send_png_rect(vs, w, h)) { 971 int ret; 972 int bpp = vs->client_pf.bytes_per_pixel * 8; 973 VncPalette *palette = palette_new(2, bpp); 974 975 palette_put(palette, bg); 976 palette_put(palette, fg); 977 ret = send_png_rect(vs, x, y, w, h, palette); 978 palette_destroy(palette); 979 return ret; 980 } 981 #endif 982 983 bytes = DIV_ROUND_UP(w, 8) * h; 984 985 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4); 986 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE); 987 vnc_write_u8(vs, 1); 988 989 switch (vs->client_pf.bytes_per_pixel) { 990 case 4: 991 { 992 uint32_t buf[2] = {bg, fg}; 993 size_t ret = sizeof (buf); 994 995 if (vs->tight->pixel24) { 996 tight_pack24(vs, (unsigned char*)buf, 2, &ret); 997 } 998 vnc_write(vs, buf, ret); 999 1000 tight_encode_mono_rect32(vs->tight->tight.buffer, w, h, bg, fg); 1001 break; 1002 } 1003 case 2: 1004 vnc_write(vs, &bg, 2); 1005 vnc_write(vs, &fg, 2); 1006 tight_encode_mono_rect16(vs->tight->tight.buffer, w, h, bg, fg); 1007 break; 1008 default: 1009 vnc_write_u8(vs, bg); 1010 vnc_write_u8(vs, fg); 1011 tight_encode_mono_rect8(vs->tight->tight.buffer, w, h, bg, fg); 1012 break; 1013 } 1014 vs->tight->tight.offset = bytes; 1015 1016 bytes = tight_compress_data(vs, stream, bytes, level, Z_DEFAULT_STRATEGY); 1017 return (bytes >= 0); 1018 } 1019 1020 struct palette_cb_priv { 1021 VncState *vs; 1022 uint8_t *header; 1023 #ifdef CONFIG_VNC_PNG 1024 png_colorp png_palette; 1025 #endif 1026 }; 1027 1028 static void write_palette(int idx, uint32_t color, void *opaque) 1029 { 1030 struct palette_cb_priv *priv = opaque; 1031 VncState *vs = priv->vs; 1032 uint32_t bytes = vs->client_pf.bytes_per_pixel; 1033 1034 if (bytes == 4) { 1035 ((uint32_t*)priv->header)[idx] = color; 1036 } else { 1037 ((uint16_t*)priv->header)[idx] = color; 1038 } 1039 } 1040 1041 static bool send_gradient_rect(VncState *vs, int x, int y, int w, int h) 1042 { 1043 int stream = 3; 1044 int level = tight_conf[vs->tight->compression].gradient_zlib_level; 1045 ssize_t bytes; 1046 1047 if (vs->client_pf.bytes_per_pixel == 1) { 1048 return send_full_color_rect(vs, x, y, w, h); 1049 } 1050 1051 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4); 1052 vnc_write_u8(vs, VNC_TIGHT_FILTER_GRADIENT); 1053 1054 buffer_reserve(&vs->tight->gradient, w * 3 * sizeof(int)); 1055 1056 if (vs->tight->pixel24) { 1057 tight_filter_gradient24(vs, vs->tight->tight.buffer, w, h); 1058 bytes = 3; 1059 } else if (vs->client_pf.bytes_per_pixel == 4) { 1060 tight_filter_gradient32(vs, (uint32_t *)vs->tight->tight.buffer, w, h); 1061 bytes = 4; 1062 } else { 1063 tight_filter_gradient16(vs, (uint16_t *)vs->tight->tight.buffer, w, h); 1064 bytes = 2; 1065 } 1066 1067 buffer_reset(&vs->tight->gradient); 1068 1069 bytes = w * h * bytes; 1070 vs->tight->tight.offset = bytes; 1071 1072 bytes = tight_compress_data(vs, stream, bytes, 1073 level, Z_FILTERED); 1074 return (bytes >= 0); 1075 } 1076 1077 static int send_palette_rect(VncState *vs, int x, int y, 1078 int w, int h, VncPalette *palette) 1079 { 1080 int stream = 2; 1081 int level = tight_conf[vs->tight->compression].idx_zlib_level; 1082 int colors; 1083 ssize_t bytes; 1084 1085 #ifdef CONFIG_VNC_PNG 1086 if (tight_can_send_png_rect(vs, w, h)) { 1087 return send_png_rect(vs, x, y, w, h, palette); 1088 } 1089 #endif 1090 1091 colors = palette_size(palette); 1092 1093 vnc_write_u8(vs, (stream | VNC_TIGHT_EXPLICIT_FILTER) << 4); 1094 vnc_write_u8(vs, VNC_TIGHT_FILTER_PALETTE); 1095 vnc_write_u8(vs, colors - 1); 1096 1097 switch (vs->client_pf.bytes_per_pixel) { 1098 case 4: 1099 { 1100 size_t old_offset, offset; 1101 uint32_t header[palette_size(palette)]; 1102 struct palette_cb_priv priv = { vs, (uint8_t *)header }; 1103 1104 old_offset = vs->output.offset; 1105 palette_iter(palette, write_palette, &priv); 1106 vnc_write(vs, header, sizeof(header)); 1107 1108 if (vs->tight->pixel24) { 1109 tight_pack24(vs, vs->output.buffer + old_offset, colors, &offset); 1110 vs->output.offset = old_offset + offset; 1111 } 1112 1113 tight_encode_indexed_rect32(vs->tight->tight.buffer, w * h, palette); 1114 break; 1115 } 1116 case 2: 1117 { 1118 uint16_t header[palette_size(palette)]; 1119 struct palette_cb_priv priv = { vs, (uint8_t *)header }; 1120 1121 palette_iter(palette, write_palette, &priv); 1122 vnc_write(vs, header, sizeof(header)); 1123 tight_encode_indexed_rect16(vs->tight->tight.buffer, w * h, palette); 1124 break; 1125 } 1126 default: 1127 return -1; /* No palette for 8bits colors */ 1128 } 1129 bytes = w * h; 1130 vs->tight->tight.offset = bytes; 1131 1132 bytes = tight_compress_data(vs, stream, bytes, 1133 level, Z_DEFAULT_STRATEGY); 1134 return (bytes >= 0); 1135 } 1136 1137 /* 1138 * JPEG compression stuff. 1139 */ 1140 #ifdef CONFIG_VNC_JPEG 1141 /* 1142 * Destination manager implementation for JPEG library. 1143 */ 1144 1145 /* This is called once per encoding */ 1146 static void jpeg_init_destination(j_compress_ptr cinfo) 1147 { 1148 VncState *vs = cinfo->client_data; 1149 Buffer *buffer = &vs->tight->jpeg; 1150 1151 cinfo->dest->next_output_byte = (JOCTET *)buffer->buffer + buffer->offset; 1152 cinfo->dest->free_in_buffer = (size_t)(buffer->capacity - buffer->offset); 1153 } 1154 1155 /* This is called when we ran out of buffer (shouldn't happen!) */ 1156 static boolean jpeg_empty_output_buffer(j_compress_ptr cinfo) 1157 { 1158 VncState *vs = cinfo->client_data; 1159 Buffer *buffer = &vs->tight->jpeg; 1160 1161 buffer->offset = buffer->capacity; 1162 buffer_reserve(buffer, 2048); 1163 jpeg_init_destination(cinfo); 1164 return TRUE; 1165 } 1166 1167 /* This is called when we are done processing data */ 1168 static void jpeg_term_destination(j_compress_ptr cinfo) 1169 { 1170 VncState *vs = cinfo->client_data; 1171 Buffer *buffer = &vs->tight->jpeg; 1172 1173 buffer->offset = buffer->capacity - cinfo->dest->free_in_buffer; 1174 } 1175 1176 static int send_jpeg_rect(VncState *vs, int x, int y, int w, int h, int quality) 1177 { 1178 struct jpeg_compress_struct cinfo; 1179 struct jpeg_error_mgr jerr; 1180 struct jpeg_destination_mgr manager; 1181 pixman_image_t *linebuf; 1182 JSAMPROW row[1]; 1183 uint8_t *buf; 1184 int dy; 1185 1186 if (surface_bytes_per_pixel(vs->vd->ds) == 1) { 1187 return send_full_color_rect(vs, x, y, w, h); 1188 } 1189 1190 buffer_reserve(&vs->tight->jpeg, 2048); 1191 1192 cinfo.err = jpeg_std_error(&jerr); 1193 jpeg_create_compress(&cinfo); 1194 1195 cinfo.client_data = vs; 1196 cinfo.image_width = w; 1197 cinfo.image_height = h; 1198 cinfo.input_components = 3; 1199 cinfo.in_color_space = JCS_RGB; 1200 1201 jpeg_set_defaults(&cinfo); 1202 jpeg_set_quality(&cinfo, quality, true); 1203 1204 manager.init_destination = jpeg_init_destination; 1205 manager.empty_output_buffer = jpeg_empty_output_buffer; 1206 manager.term_destination = jpeg_term_destination; 1207 cinfo.dest = &manager; 1208 1209 jpeg_start_compress(&cinfo, true); 1210 1211 linebuf = qemu_pixman_linebuf_create(PIXMAN_BE_r8g8b8, w); 1212 buf = (uint8_t *)pixman_image_get_data(linebuf); 1213 row[0] = buf; 1214 for (dy = 0; dy < h; dy++) { 1215 qemu_pixman_linebuf_fill(linebuf, vs->vd->server, w, x, y + dy); 1216 jpeg_write_scanlines(&cinfo, row, 1); 1217 } 1218 qemu_pixman_image_unref(linebuf); 1219 1220 jpeg_finish_compress(&cinfo); 1221 jpeg_destroy_compress(&cinfo); 1222 1223 vnc_write_u8(vs, VNC_TIGHT_JPEG << 4); 1224 1225 tight_send_compact_size(vs, vs->tight->jpeg.offset); 1226 vnc_write(vs, vs->tight->jpeg.buffer, vs->tight->jpeg.offset); 1227 buffer_reset(&vs->tight->jpeg); 1228 1229 return 1; 1230 } 1231 #endif /* CONFIG_VNC_JPEG */ 1232 1233 /* 1234 * PNG compression stuff. 1235 */ 1236 #ifdef CONFIG_VNC_PNG 1237 static void write_png_palette(int idx, uint32_t pix, void *opaque) 1238 { 1239 struct palette_cb_priv *priv = opaque; 1240 VncState *vs = priv->vs; 1241 png_colorp color = &priv->png_palette[idx]; 1242 1243 if (vs->tight->pixel24) 1244 { 1245 color->red = (pix >> vs->client_pf.rshift) & vs->client_pf.rmax; 1246 color->green = (pix >> vs->client_pf.gshift) & vs->client_pf.gmax; 1247 color->blue = (pix >> vs->client_pf.bshift) & vs->client_pf.bmax; 1248 } 1249 else 1250 { 1251 int red, green, blue; 1252 1253 red = (pix >> vs->client_pf.rshift) & vs->client_pf.rmax; 1254 green = (pix >> vs->client_pf.gshift) & vs->client_pf.gmax; 1255 blue = (pix >> vs->client_pf.bshift) & vs->client_pf.bmax; 1256 color->red = ((red * 255 + vs->client_pf.rmax / 2) / 1257 vs->client_pf.rmax); 1258 color->green = ((green * 255 + vs->client_pf.gmax / 2) / 1259 vs->client_pf.gmax); 1260 color->blue = ((blue * 255 + vs->client_pf.bmax / 2) / 1261 vs->client_pf.bmax); 1262 } 1263 } 1264 1265 static void png_write_data(png_structp png_ptr, png_bytep data, 1266 png_size_t length) 1267 { 1268 VncState *vs = png_get_io_ptr(png_ptr); 1269 1270 buffer_reserve(&vs->tight->png, vs->tight->png.offset + length); 1271 memcpy(vs->tight->png.buffer + vs->tight->png.offset, data, length); 1272 1273 vs->tight->png.offset += length; 1274 } 1275 1276 static void png_flush_data(png_structp png_ptr) 1277 { 1278 } 1279 1280 static void *vnc_png_malloc(png_structp png_ptr, png_size_t size) 1281 { 1282 return g_malloc(size); 1283 } 1284 1285 static void vnc_png_free(png_structp png_ptr, png_voidp ptr) 1286 { 1287 g_free(ptr); 1288 } 1289 1290 static int send_png_rect(VncState *vs, int x, int y, int w, int h, 1291 VncPalette *palette) 1292 { 1293 png_byte color_type; 1294 png_structp png_ptr; 1295 png_infop info_ptr; 1296 png_colorp png_palette = NULL; 1297 pixman_image_t *linebuf; 1298 int level = tight_png_conf[vs->tight->compression].png_zlib_level; 1299 int filters = tight_png_conf[vs->tight->compression].png_filters; 1300 uint8_t *buf; 1301 int dy; 1302 1303 png_ptr = png_create_write_struct_2(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL, 1304 NULL, vnc_png_malloc, vnc_png_free); 1305 1306 if (png_ptr == NULL) 1307 return -1; 1308 1309 info_ptr = png_create_info_struct(png_ptr); 1310 1311 if (info_ptr == NULL) { 1312 png_destroy_write_struct(&png_ptr, NULL); 1313 return -1; 1314 } 1315 1316 png_set_write_fn(png_ptr, (void *) vs, png_write_data, png_flush_data); 1317 png_set_compression_level(png_ptr, level); 1318 png_set_filter(png_ptr, PNG_FILTER_TYPE_DEFAULT, filters); 1319 1320 if (palette) { 1321 color_type = PNG_COLOR_TYPE_PALETTE; 1322 } else { 1323 color_type = PNG_COLOR_TYPE_RGB; 1324 } 1325 1326 png_set_IHDR(png_ptr, info_ptr, w, h, 1327 8, color_type, PNG_INTERLACE_NONE, 1328 PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); 1329 1330 if (color_type == PNG_COLOR_TYPE_PALETTE) { 1331 struct palette_cb_priv priv; 1332 1333 png_palette = png_malloc(png_ptr, sizeof(*png_palette) * 1334 palette_size(palette)); 1335 1336 priv.vs = vs; 1337 priv.png_palette = png_palette; 1338 palette_iter(palette, write_png_palette, &priv); 1339 1340 png_set_PLTE(png_ptr, info_ptr, png_palette, palette_size(palette)); 1341 1342 if (vs->client_pf.bytes_per_pixel == 4) { 1343 tight_encode_indexed_rect32(vs->tight->tight.buffer, w * h, 1344 palette); 1345 } else { 1346 tight_encode_indexed_rect16(vs->tight->tight.buffer, w * h, 1347 palette); 1348 } 1349 } 1350 1351 png_write_info(png_ptr, info_ptr); 1352 1353 buffer_reserve(&vs->tight->png, 2048); 1354 linebuf = qemu_pixman_linebuf_create(PIXMAN_BE_r8g8b8, w); 1355 buf = (uint8_t *)pixman_image_get_data(linebuf); 1356 for (dy = 0; dy < h; dy++) 1357 { 1358 if (color_type == PNG_COLOR_TYPE_PALETTE) { 1359 memcpy(buf, vs->tight->tight.buffer + (dy * w), w); 1360 } else { 1361 qemu_pixman_linebuf_fill(linebuf, vs->vd->server, w, x, y + dy); 1362 } 1363 png_write_row(png_ptr, buf); 1364 } 1365 qemu_pixman_image_unref(linebuf); 1366 1367 png_write_end(png_ptr, NULL); 1368 1369 if (color_type == PNG_COLOR_TYPE_PALETTE) { 1370 png_free(png_ptr, png_palette); 1371 } 1372 1373 png_destroy_write_struct(&png_ptr, &info_ptr); 1374 1375 vnc_write_u8(vs, VNC_TIGHT_PNG << 4); 1376 1377 tight_send_compact_size(vs, vs->tight->png.offset); 1378 vnc_write(vs, vs->tight->png.buffer, vs->tight->png.offset); 1379 buffer_reset(&vs->tight->png); 1380 return 1; 1381 } 1382 #endif /* CONFIG_VNC_PNG */ 1383 1384 static void vnc_tight_start(VncState *vs) 1385 { 1386 buffer_reset(&vs->tight->tight); 1387 1388 // make the output buffer be the zlib buffer, so we can compress it later 1389 vs->tight->tmp = vs->output; 1390 vs->output = vs->tight->tight; 1391 } 1392 1393 static void vnc_tight_stop(VncState *vs) 1394 { 1395 // switch back to normal output/zlib buffers 1396 vs->tight->tight = vs->output; 1397 vs->output = vs->tight->tmp; 1398 } 1399 1400 static int send_sub_rect_nojpeg(VncState *vs, int x, int y, int w, int h, 1401 int bg, int fg, int colors, VncPalette *palette) 1402 { 1403 int ret; 1404 1405 if (colors == 0) { 1406 if (tight_detect_smooth_image(vs, w, h)) { 1407 ret = send_gradient_rect(vs, x, y, w, h); 1408 } else { 1409 ret = send_full_color_rect(vs, x, y, w, h); 1410 } 1411 } else if (colors == 1) { 1412 ret = send_solid_rect(vs); 1413 } else if (colors == 2) { 1414 ret = send_mono_rect(vs, x, y, w, h, bg, fg); 1415 } else if (colors <= 256) { 1416 ret = send_palette_rect(vs, x, y, w, h, palette); 1417 } else { 1418 ret = 0; 1419 } 1420 return ret; 1421 } 1422 1423 #ifdef CONFIG_VNC_JPEG 1424 static int send_sub_rect_jpeg(VncState *vs, int x, int y, int w, int h, 1425 int bg, int fg, int colors, 1426 VncPalette *palette, bool force) 1427 { 1428 int ret; 1429 1430 if (colors == 0) { 1431 if (force || (tight_jpeg_conf[vs->tight->quality].jpeg_full && 1432 tight_detect_smooth_image(vs, w, h))) { 1433 int quality = tight_conf[vs->tight->quality].jpeg_quality; 1434 1435 ret = send_jpeg_rect(vs, x, y, w, h, quality); 1436 } else { 1437 ret = send_full_color_rect(vs, x, y, w, h); 1438 } 1439 } else if (colors == 1) { 1440 ret = send_solid_rect(vs); 1441 } else if (colors == 2) { 1442 ret = send_mono_rect(vs, x, y, w, h, bg, fg); 1443 } else if (colors <= 256) { 1444 if (force || (colors > 96 && 1445 tight_jpeg_conf[vs->tight->quality].jpeg_idx && 1446 tight_detect_smooth_image(vs, w, h))) { 1447 int quality = tight_conf[vs->tight->quality].jpeg_quality; 1448 1449 ret = send_jpeg_rect(vs, x, y, w, h, quality); 1450 } else { 1451 ret = send_palette_rect(vs, x, y, w, h, palette); 1452 } 1453 } else { 1454 ret = 0; 1455 } 1456 return ret; 1457 } 1458 #endif 1459 1460 static __thread VncPalette *color_count_palette; 1461 static __thread Notifier vnc_tight_cleanup_notifier; 1462 1463 static void vnc_tight_cleanup(Notifier *n, void *value) 1464 { 1465 g_free(color_count_palette); 1466 color_count_palette = NULL; 1467 } 1468 1469 static int send_sub_rect(VncState *vs, int x, int y, int w, int h) 1470 { 1471 uint32_t bg = 0, fg = 0; 1472 int colors; 1473 int ret = 0; 1474 #ifdef CONFIG_VNC_JPEG 1475 bool force_jpeg = false; 1476 bool allow_jpeg = true; 1477 #endif 1478 1479 if (!color_count_palette) { 1480 color_count_palette = g_new(VncPalette, 1); 1481 vnc_tight_cleanup_notifier.notify = vnc_tight_cleanup; 1482 qemu_thread_atexit_add(&vnc_tight_cleanup_notifier); 1483 } 1484 1485 vnc_framebuffer_update(vs, x, y, w, h, vs->tight->type); 1486 1487 vnc_tight_start(vs); 1488 vnc_raw_send_framebuffer_update(vs, x, y, w, h); 1489 vnc_tight_stop(vs); 1490 1491 #ifdef CONFIG_VNC_JPEG 1492 if (!vs->vd->non_adaptive && vs->tight->quality != (uint8_t)-1) { 1493 double freq = vnc_update_freq(vs, x, y, w, h); 1494 1495 if (freq < tight_jpeg_conf[vs->tight->quality].jpeg_freq_min) { 1496 allow_jpeg = false; 1497 } 1498 if (freq >= tight_jpeg_conf[vs->tight->quality].jpeg_freq_threshold) { 1499 force_jpeg = true; 1500 vnc_sent_lossy_rect(vs, x, y, w, h); 1501 } 1502 } 1503 #endif 1504 1505 colors = tight_fill_palette(vs, x, y, w * h, &bg, &fg, color_count_palette); 1506 1507 #ifdef CONFIG_VNC_JPEG 1508 if (allow_jpeg && vs->tight->quality != (uint8_t)-1) { 1509 ret = send_sub_rect_jpeg(vs, x, y, w, h, bg, fg, colors, 1510 color_count_palette, force_jpeg); 1511 } else { 1512 ret = send_sub_rect_nojpeg(vs, x, y, w, h, bg, fg, colors, 1513 color_count_palette); 1514 } 1515 #else 1516 ret = send_sub_rect_nojpeg(vs, x, y, w, h, bg, fg, colors, 1517 color_count_palette); 1518 #endif 1519 1520 return ret; 1521 } 1522 1523 static int send_sub_rect_solid(VncState *vs, int x, int y, int w, int h) 1524 { 1525 vnc_framebuffer_update(vs, x, y, w, h, vs->tight->type); 1526 1527 vnc_tight_start(vs); 1528 vnc_raw_send_framebuffer_update(vs, x, y, w, h); 1529 vnc_tight_stop(vs); 1530 1531 return send_solid_rect(vs); 1532 } 1533 1534 static int send_rect_simple(VncState *vs, int x, int y, int w, int h, 1535 bool split) 1536 { 1537 int max_size, max_width; 1538 int max_sub_width, max_sub_height; 1539 int dx, dy; 1540 int rw, rh; 1541 int n = 0; 1542 1543 max_size = tight_conf[vs->tight->compression].max_rect_size; 1544 max_width = tight_conf[vs->tight->compression].max_rect_width; 1545 1546 if (split && (w > max_width || w * h > max_size)) { 1547 max_sub_width = (w > max_width) ? max_width : w; 1548 max_sub_height = max_size / max_sub_width; 1549 1550 for (dy = 0; dy < h; dy += max_sub_height) { 1551 for (dx = 0; dx < w; dx += max_width) { 1552 rw = MIN(max_sub_width, w - dx); 1553 rh = MIN(max_sub_height, h - dy); 1554 n += send_sub_rect(vs, x+dx, y+dy, rw, rh); 1555 } 1556 } 1557 } else { 1558 n += send_sub_rect(vs, x, y, w, h); 1559 } 1560 1561 return n; 1562 } 1563 1564 static int find_large_solid_color_rect(VncState *vs, int x, int y, 1565 int w, int h, int max_rows) 1566 { 1567 int dx, dy, dw, dh; 1568 int n = 0; 1569 1570 /* Try to find large solid-color areas and send them separately. */ 1571 1572 for (dy = y; dy < y + h; dy += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) { 1573 1574 /* If a rectangle becomes too large, send its upper part now. */ 1575 1576 if (dy - y >= max_rows) { 1577 n += send_rect_simple(vs, x, y, w, max_rows, true); 1578 y += max_rows; 1579 h -= max_rows; 1580 } 1581 1582 dh = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (y + h - dy)); 1583 1584 for (dx = x; dx < x + w; dx += VNC_TIGHT_MAX_SPLIT_TILE_SIZE) { 1585 uint32_t color_value; 1586 int x_best, y_best, w_best, h_best; 1587 1588 dw = MIN(VNC_TIGHT_MAX_SPLIT_TILE_SIZE, (x + w - dx)); 1589 1590 if (!check_solid_tile(vs, dx, dy, dw, dh, &color_value, false)) { 1591 continue ; 1592 } 1593 1594 /* Get dimensions of solid-color area. */ 1595 1596 find_best_solid_area(vs, dx, dy, w - (dx - x), h - (dy - y), 1597 color_value, &w_best, &h_best); 1598 1599 /* Make sure a solid rectangle is large enough 1600 (or the whole rectangle is of the same color). */ 1601 1602 if (w_best * h_best != w * h && 1603 w_best * h_best < VNC_TIGHT_MIN_SOLID_SUBRECT_SIZE) { 1604 continue; 1605 } 1606 1607 /* Try to extend solid rectangle to maximum size. */ 1608 1609 x_best = dx; y_best = dy; 1610 extend_solid_area(vs, x, y, w, h, color_value, 1611 &x_best, &y_best, &w_best, &h_best); 1612 1613 /* Send rectangles at top and left to solid-color area. */ 1614 1615 if (y_best != y) { 1616 n += send_rect_simple(vs, x, y, w, y_best-y, true); 1617 } 1618 if (x_best != x) { 1619 n += tight_send_framebuffer_update(vs, x, y_best, 1620 x_best-x, h_best); 1621 } 1622 1623 /* Send solid-color rectangle. */ 1624 n += send_sub_rect_solid(vs, x_best, y_best, w_best, h_best); 1625 1626 /* Send remaining rectangles (at right and bottom). */ 1627 1628 if (x_best + w_best != x + w) { 1629 n += tight_send_framebuffer_update(vs, x_best+w_best, 1630 y_best, 1631 w-(x_best-x)-w_best, 1632 h_best); 1633 } 1634 if (y_best + h_best != y + h) { 1635 n += tight_send_framebuffer_update(vs, x, y_best+h_best, 1636 w, h-(y_best-y)-h_best); 1637 } 1638 1639 /* Return after all recursive calls are done. */ 1640 return n; 1641 } 1642 } 1643 return n + send_rect_simple(vs, x, y, w, h, true); 1644 } 1645 1646 static int tight_send_framebuffer_update(VncState *vs, int x, int y, 1647 int w, int h) 1648 { 1649 int max_rows; 1650 1651 if (vs->client_pf.bytes_per_pixel == 4 && vs->client_pf.rmax == 0xFF && 1652 vs->client_pf.bmax == 0xFF && vs->client_pf.gmax == 0xFF) { 1653 vs->tight->pixel24 = true; 1654 } else { 1655 vs->tight->pixel24 = false; 1656 } 1657 1658 #ifdef CONFIG_VNC_JPEG 1659 if (vs->tight->quality != (uint8_t)-1) { 1660 double freq = vnc_update_freq(vs, x, y, w, h); 1661 1662 if (freq > tight_jpeg_conf[vs->tight->quality].jpeg_freq_threshold) { 1663 return send_rect_simple(vs, x, y, w, h, false); 1664 } 1665 } 1666 #endif 1667 1668 if (w * h < VNC_TIGHT_MIN_SPLIT_RECT_SIZE) { 1669 return send_rect_simple(vs, x, y, w, h, true); 1670 } 1671 1672 /* Calculate maximum number of rows in one non-solid rectangle. */ 1673 1674 max_rows = tight_conf[vs->tight->compression].max_rect_size; 1675 max_rows /= MIN(tight_conf[vs->tight->compression].max_rect_width, w); 1676 1677 return find_large_solid_color_rect(vs, x, y, w, h, max_rows); 1678 } 1679 1680 int vnc_tight_send_framebuffer_update(VncState *vs, int x, int y, 1681 int w, int h) 1682 { 1683 vs->tight->type = VNC_ENCODING_TIGHT; 1684 return tight_send_framebuffer_update(vs, x, y, w, h); 1685 } 1686 1687 int vnc_tight_png_send_framebuffer_update(VncState *vs, int x, int y, 1688 int w, int h) 1689 { 1690 vs->tight->type = VNC_ENCODING_TIGHT_PNG; 1691 return tight_send_framebuffer_update(vs, x, y, w, h); 1692 } 1693 1694 void vnc_tight_clear(VncState *vs) 1695 { 1696 int i; 1697 for (i = 0; i < ARRAY_SIZE(vs->tight->stream); i++) { 1698 if (vs->tight->stream[i].opaque) { 1699 deflateEnd(&vs->tight->stream[i]); 1700 } 1701 } 1702 1703 buffer_free(&vs->tight->tight); 1704 buffer_free(&vs->tight->zlib); 1705 buffer_free(&vs->tight->gradient); 1706 #ifdef CONFIG_VNC_JPEG 1707 buffer_free(&vs->tight->jpeg); 1708 #endif 1709 #ifdef CONFIG_VNC_PNG 1710 buffer_free(&vs->tight->png); 1711 #endif 1712 } 1713