xref: /openbmc/qemu/ui/cursor.c (revision 89aafcf2)
1 #include "qemu/osdep.h"
2 #include "ui/console.h"
3 
4 #include "cursor_hidden.xpm"
5 #include "cursor_left_ptr.xpm"
6 
7 /* for creating built-in cursors */
8 static QEMUCursor *cursor_parse_xpm(const char *xpm[])
9 {
10     QEMUCursor *c;
11     uint32_t ctab[128];
12     unsigned int width, height, colors, chars;
13     unsigned int line = 0, i, r, g, b, x, y, pixel;
14     char name[16];
15     uint8_t idx;
16 
17     /* parse header line: width, height, #colors, #chars */
18     if (sscanf(xpm[line], "%u %u %u %u",
19                &width, &height, &colors, &chars) != 4) {
20         fprintf(stderr, "%s: header parse error: \"%s\"\n",
21                 __func__, xpm[line]);
22         return NULL;
23     }
24     if (chars != 1) {
25         fprintf(stderr, "%s: chars != 1 not supported\n", __func__);
26         return NULL;
27     }
28     line++;
29 
30     /* parse color table */
31     for (i = 0; i < colors; i++, line++) {
32         if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) {
33             if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) {
34                 ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r;
35                 continue;
36             }
37             if (strcmp(name, "None") == 0) {
38                 ctab[idx] = 0x00000000;
39                 continue;
40             }
41         }
42         fprintf(stderr, "%s: color parse error: \"%s\"\n",
43                 __func__, xpm[line]);
44         return NULL;
45     }
46 
47     /* parse pixel data */
48     c = cursor_alloc(width, height);
49     assert(c != NULL);
50 
51     for (pixel = 0, y = 0; y < height; y++, line++) {
52         for (x = 0; x < height; x++, pixel++) {
53             idx = xpm[line][x];
54             c->data[pixel] = ctab[idx];
55         }
56     }
57     return c;
58 }
59 
60 /* nice for debugging */
61 void cursor_print_ascii_art(QEMUCursor *c, const char *prefix)
62 {
63     uint32_t *data = c->data;
64     int x,y;
65 
66     for (y = 0; y < c->height; y++) {
67         fprintf(stderr, "%s: %2d: |", prefix, y);
68         for (x = 0; x < c->width; x++, data++) {
69             if ((*data & 0xff000000) != 0xff000000) {
70                 fprintf(stderr, " "); /* transparent */
71             } else if ((*data & 0x00ffffff) == 0x00ffffff) {
72                 fprintf(stderr, "."); /* white */
73             } else if ((*data & 0x00ffffff) == 0x00000000) {
74                 fprintf(stderr, "X"); /* black */
75             } else {
76                 fprintf(stderr, "o"); /* other */
77             }
78         }
79         fprintf(stderr, "|\n");
80     }
81 }
82 
83 QEMUCursor *cursor_builtin_hidden(void)
84 {
85     return cursor_parse_xpm(cursor_hidden_xpm);
86 }
87 
88 QEMUCursor *cursor_builtin_left_ptr(void)
89 {
90     return cursor_parse_xpm(cursor_left_ptr_xpm);
91 }
92 
93 QEMUCursor *cursor_alloc(uint16_t width, uint16_t height)
94 {
95     QEMUCursor *c;
96     size_t datasize = width * height * sizeof(uint32_t);
97 
98     /* Modern physical hardware typically uses 512x512 sprites */
99     if (width > 512 || height > 512) {
100         return NULL;
101     }
102 
103     c = g_malloc0(sizeof(QEMUCursor) + datasize);
104     c->width  = width;
105     c->height = height;
106     c->refcount = 1;
107     return c;
108 }
109 
110 QEMUCursor *cursor_ref(QEMUCursor *c)
111 {
112     c->refcount++;
113     return c;
114 }
115 
116 void cursor_unref(QEMUCursor *c)
117 {
118     if (c == NULL)
119         return;
120     c->refcount--;
121     if (c->refcount)
122         return;
123     g_free(c);
124 }
125 
126 int cursor_get_mono_bpl(QEMUCursor *c)
127 {
128     return DIV_ROUND_UP(c->width, 8);
129 }
130 
131 void cursor_set_mono(QEMUCursor *c,
132                      uint32_t foreground, uint32_t background, uint8_t *image,
133                      int transparent, uint8_t *mask)
134 {
135     uint32_t *data = c->data;
136     uint8_t bit;
137     int x,y,bpl;
138     bool expand_bitmap_only = image == mask;
139     bool has_inverted_colors = false;
140     const uint32_t inverted = 0x80000000;
141 
142     /*
143      * Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask':
144      * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers
145      */
146     bpl = cursor_get_mono_bpl(c);
147     for (y = 0; y < c->height; y++) {
148         bit = 0x80;
149         for (x = 0; x < c->width; x++, data++) {
150             if (transparent && mask[x/8] & bit) {
151                 if (!expand_bitmap_only && image[x / 8] & bit) {
152                     *data = inverted;
153                     has_inverted_colors = true;
154                 } else {
155                     *data = 0x00000000;
156                 }
157             } else if (!transparent && !(mask[x/8] & bit)) {
158                 *data = 0x00000000;
159             } else if (image[x/8] & bit) {
160                 *data = 0xff000000 | foreground;
161             } else {
162                 *data = 0xff000000 | background;
163             }
164             bit >>= 1;
165             if (bit == 0) {
166                 bit = 0x80;
167             }
168         }
169         mask  += bpl;
170         image += bpl;
171     }
172 
173     /*
174      * If there are any pixels with inverted colors, create an outline (fill
175      * transparent neighbors with the background color) and use the foreground
176      * color as "inverted" color.
177      */
178     if (has_inverted_colors) {
179         data = c->data;
180         for (y = 0; y < c->height; y++) {
181             for (x = 0; x < c->width; x++, data++) {
182                 if (*data == 0 /* transparent */ &&
183                         ((x > 0 && data[-1] == inverted) ||
184                          (x + 1 < c->width && data[1] == inverted) ||
185                          (y > 0 && data[-c->width] == inverted) ||
186                          (y + 1 < c->height && data[c->width] == inverted))) {
187                     *data = 0xff000000 | background;
188                 }
189             }
190         }
191         data = c->data;
192         for (x = 0; x < c->width * c->height; x++, data++) {
193             if (*data == inverted) {
194                 *data = 0xff000000 | foreground;
195             }
196         }
197     }
198 }
199 
200 void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image)
201 {
202     uint32_t *data = c->data;
203     uint8_t bit;
204     int x,y,bpl;
205 
206     bpl = cursor_get_mono_bpl(c);
207     memset(image, 0, bpl * c->height);
208     for (y = 0; y < c->height; y++) {
209         bit = 0x80;
210         for (x = 0; x < c->width; x++, data++) {
211             if (((*data & 0xff000000) == 0xff000000) &&
212                 ((*data & 0x00ffffff) == foreground)) {
213                 image[x/8] |= bit;
214             }
215             bit >>= 1;
216             if (bit == 0) {
217                 bit = 0x80;
218             }
219         }
220         image += bpl;
221     }
222 }
223 
224 void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask)
225 {
226     uint32_t *data = c->data;
227     uint8_t bit;
228     int x,y,bpl;
229 
230     bpl = cursor_get_mono_bpl(c);
231     memset(mask, 0, bpl * c->height);
232     for (y = 0; y < c->height; y++) {
233         bit = 0x80;
234         for (x = 0; x < c->width; x++, data++) {
235             if ((*data & 0xff000000) != 0xff000000) {
236                 if (transparent != 0) {
237                     mask[x/8] |= bit;
238                 }
239             } else {
240                 if (transparent == 0) {
241                     mask[x/8] |= bit;
242                 }
243             }
244             bit >>= 1;
245             if (bit == 0) {
246                 bit = 0x80;
247             }
248         }
249         mask += bpl;
250     }
251 }
252