1 /* 2 * Test 128-bit division functions 3 * 4 * Copyright (c) 2021 Instituto de Pesquisas Eldorado (eldorado.org.br) 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/host-utils.h" 22 23 typedef struct { 24 uint64_t high; 25 uint64_t low; 26 uint64_t rhigh; 27 uint64_t rlow; 28 uint64_t divisor; 29 uint64_t remainder; 30 } test_data_unsigned; 31 32 typedef struct { 33 int64_t high; 34 uint64_t low; 35 int64_t rhigh; 36 uint64_t rlow; 37 int64_t divisor; 38 int64_t remainder; 39 } test_data_signed; 40 41 static const test_data_unsigned test_table_unsigned[] = { 42 /* Dividend fits in 64 bits */ 43 { 0x0000000000000000ULL, 0x0000000000000000ULL, 44 0x0000000000000000ULL, 0x0000000000000000ULL, 45 0x0000000000000001ULL, 0x0000000000000000ULL}, 46 { 0x0000000000000000ULL, 0x0000000000000001ULL, 47 0x0000000000000000ULL, 0x0000000000000001ULL, 48 0x0000000000000001ULL, 0x0000000000000000ULL}, 49 { 0x0000000000000000ULL, 0x0000000000000003ULL, 50 0x0000000000000000ULL, 0x0000000000000001ULL, 51 0x0000000000000002ULL, 0x0000000000000001ULL}, 52 { 0x0000000000000000ULL, 0x8000000000000000ULL, 53 0x0000000000000000ULL, 0x8000000000000000ULL, 54 0x0000000000000001ULL, 0x0000000000000000ULL}, 55 { 0x0000000000000000ULL, 0xa000000000000000ULL, 56 0x0000000000000000ULL, 0x0000000000000002ULL, 57 0x4000000000000000ULL, 0x2000000000000000ULL}, 58 { 0x0000000000000000ULL, 0x8000000000000000ULL, 59 0x0000000000000000ULL, 0x0000000000000001ULL, 60 0x8000000000000000ULL, 0x0000000000000000ULL}, 61 62 /* Dividend > 64 bits, with MSB 0 */ 63 { 0x123456789abcdefeULL, 0xefedcba987654321ULL, 64 0x123456789abcdefeULL, 0xefedcba987654321ULL, 65 0x0000000000000001ULL, 0x0000000000000000ULL}, 66 { 0x123456789abcdefeULL, 0xefedcba987654321ULL, 67 0x0000000000000001ULL, 0x000000000000000dULL, 68 0x123456789abcdefeULL, 0x03456789abcdf03bULL}, 69 { 0x123456789abcdefeULL, 0xefedcba987654321ULL, 70 0x0123456789abcdefULL, 0xeefedcba98765432ULL, 71 0x0000000000000010ULL, 0x0000000000000001ULL}, 72 73 /* Dividend > 64 bits, with MSB 1 */ 74 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 75 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 76 0x0000000000000001ULL, 0x0000000000000000ULL}, 77 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 78 0x0000000000000001ULL, 0x0000000000000000ULL, 79 0xfeeddccbbaa99887ULL, 0x766554433221100fULL}, 80 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 81 0x0feeddccbbaa9988ULL, 0x7766554433221100ULL, 82 0x0000000000000010ULL, 0x000000000000000fULL}, 83 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 84 0x000000000000000eULL, 0x00f0f0f0f0f0f35aULL, 85 0x123456789abcdefeULL, 0x0f8922bc55ef90c3ULL}, 86 87 /** 88 * Divisor == 64 bits, with MSB 1 89 * and high 64 bits of dividend >= divisor 90 * (for testing normalization) 91 */ 92 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 93 0x0000000000000001ULL, 0x0000000000000000ULL, 94 0xfeeddccbbaa99887ULL, 0x766554433221100fULL}, 95 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL, 96 0x0000000000000001ULL, 0xfddbb9977553310aULL, 97 0x8000000000000001ULL, 0x78899aabbccddf05ULL}, 98 99 /* Dividend > 64 bits, divisor almost as big */ 100 { 0x0000000000000001ULL, 0x23456789abcdef01ULL, 101 0x0000000000000000ULL, 0x000000000000000fULL, 102 0x123456789abcdefeULL, 0x123456789abcde1fULL}, 103 }; 104 105 static const test_data_signed test_table_signed[] = { 106 /* Positive dividend, positive/negative divisors */ 107 { 0x0000000000000000LL, 0x0000000000bc614eULL, 108 0x0000000000000000LL, 0x0000000000bc614eULL, 109 0x0000000000000001LL, 0x0000000000000000LL}, 110 { 0x0000000000000000LL, 0x0000000000bc614eULL, 111 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 112 0xffffffffffffffffLL, 0x0000000000000000LL}, 113 { 0x0000000000000000LL, 0x0000000000bc614eULL, 114 0x0000000000000000LL, 0x00000000005e30a7ULL, 115 0x0000000000000002LL, 0x0000000000000000LL}, 116 { 0x0000000000000000LL, 0x0000000000bc614eULL, 117 0xffffffffffffffffLL, 0xffffffffffa1cf59ULL, 118 0xfffffffffffffffeLL, 0x0000000000000000LL}, 119 { 0x0000000000000000LL, 0x0000000000bc614eULL, 120 0x0000000000000000LL, 0x0000000000178c29ULL, 121 0x0000000000000008LL, 0x0000000000000006LL}, 122 { 0x0000000000000000LL, 0x0000000000bc614eULL, 123 0xffffffffffffffffLL, 0xffffffffffe873d7ULL, 124 0xfffffffffffffff8LL, 0x0000000000000006LL}, 125 { 0x0000000000000000LL, 0x0000000000bc614eULL, 126 0x0000000000000000LL, 0x000000000000550dULL, 127 0x0000000000000237LL, 0x0000000000000183LL}, 128 { 0x0000000000000000LL, 0x0000000000bc614eULL, 129 0xffffffffffffffffLL, 0xffffffffffffaaf3ULL, 130 0xfffffffffffffdc9LL, 0x0000000000000183LL}, 131 132 /* Negative dividend, positive/negative divisors */ 133 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 134 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 135 0x0000000000000001LL, 0x0000000000000000LL}, 136 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 137 0x0000000000000000LL, 0x0000000000bc614eULL, 138 0xffffffffffffffffLL, 0x0000000000000000LL}, 139 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 140 0xffffffffffffffffLL, 0xffffffffffa1cf59ULL, 141 0x0000000000000002LL, 0x0000000000000000LL}, 142 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 143 0x0000000000000000LL, 0x00000000005e30a7ULL, 144 0xfffffffffffffffeLL, 0x0000000000000000LL}, 145 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 146 0xffffffffffffffffLL, 0xffffffffffe873d7ULL, 147 0x0000000000000008LL, 0xfffffffffffffffaLL}, 148 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 149 0x0000000000000000LL, 0x0000000000178c29ULL, 150 0xfffffffffffffff8LL, 0xfffffffffffffffaLL}, 151 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 152 0xffffffffffffffffLL, 0xffffffffffffaaf3ULL, 153 0x0000000000000237LL, 0xfffffffffffffe7dLL}, 154 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL, 155 0x0000000000000000LL, 0x000000000000550dULL, 156 0xfffffffffffffdc9LL, 0xfffffffffffffe7dLL}, 157 }; 158 159 static void test_divu128(void) 160 { 161 int i; 162 uint64_t rem; 163 test_data_unsigned tmp; 164 165 for (i = 0; i < ARRAY_SIZE(test_table_unsigned); ++i) { 166 tmp = test_table_unsigned[i]; 167 168 rem = divu128(&tmp.low, &tmp.high, tmp.divisor); 169 g_assert_cmpuint(tmp.low, ==, tmp.rlow); 170 g_assert_cmpuint(tmp.high, ==, tmp.rhigh); 171 g_assert_cmpuint(rem, ==, tmp.remainder); 172 } 173 } 174 175 static void test_divs128(void) 176 { 177 int i; 178 int64_t rem; 179 test_data_signed tmp; 180 181 for (i = 0; i < ARRAY_SIZE(test_table_signed); ++i) { 182 tmp = test_table_signed[i]; 183 184 rem = divs128(&tmp.low, &tmp.high, tmp.divisor); 185 g_assert_cmpuint(tmp.low, ==, tmp.rlow); 186 g_assert_cmpuint(tmp.high, ==, tmp.rhigh); 187 g_assert_cmpuint(rem, ==, tmp.remainder); 188 } 189 } 190 191 int main(int argc, char **argv) 192 { 193 g_test_init(&argc, &argv, NULL); 194 g_test_add_func("/host-utils/test_divu128", test_divu128); 195 g_test_add_func("/host-utils/test_divs128", test_divs128); 196 return g_test_run(); 197 } 198