1 /*
2 * Test 128-bit division functions
3 *
4 * Copyright (c) 2021 Instituto de Pesquisas Eldorado (eldorado.org.br)
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/host-utils.h"
22
23 typedef struct {
24 uint64_t high;
25 uint64_t low;
26 uint64_t rhigh;
27 uint64_t rlow;
28 uint64_t divisor;
29 uint64_t remainder;
30 } test_data_unsigned;
31
32 typedef struct {
33 int64_t high;
34 uint64_t low;
35 int64_t rhigh;
36 uint64_t rlow;
37 int64_t divisor;
38 int64_t remainder;
39 } test_data_signed;
40
41 static const test_data_unsigned test_table_unsigned[] = {
42 /* Dividend fits in 64 bits */
43 { 0x0000000000000000ULL, 0x0000000000000000ULL,
44 0x0000000000000000ULL, 0x0000000000000000ULL,
45 0x0000000000000001ULL, 0x0000000000000000ULL},
46 { 0x0000000000000000ULL, 0x0000000000000001ULL,
47 0x0000000000000000ULL, 0x0000000000000001ULL,
48 0x0000000000000001ULL, 0x0000000000000000ULL},
49 { 0x0000000000000000ULL, 0x0000000000000003ULL,
50 0x0000000000000000ULL, 0x0000000000000001ULL,
51 0x0000000000000002ULL, 0x0000000000000001ULL},
52 { 0x0000000000000000ULL, 0x8000000000000000ULL,
53 0x0000000000000000ULL, 0x8000000000000000ULL,
54 0x0000000000000001ULL, 0x0000000000000000ULL},
55 { 0x0000000000000000ULL, 0xa000000000000000ULL,
56 0x0000000000000000ULL, 0x0000000000000002ULL,
57 0x4000000000000000ULL, 0x2000000000000000ULL},
58 { 0x0000000000000000ULL, 0x8000000000000000ULL,
59 0x0000000000000000ULL, 0x0000000000000001ULL,
60 0x8000000000000000ULL, 0x0000000000000000ULL},
61
62 /* Dividend > 64 bits, with MSB 0 */
63 { 0x123456789abcdefeULL, 0xefedcba987654321ULL,
64 0x123456789abcdefeULL, 0xefedcba987654321ULL,
65 0x0000000000000001ULL, 0x0000000000000000ULL},
66 { 0x123456789abcdefeULL, 0xefedcba987654321ULL,
67 0x0000000000000001ULL, 0x000000000000000dULL,
68 0x123456789abcdefeULL, 0x03456789abcdf03bULL},
69 { 0x123456789abcdefeULL, 0xefedcba987654321ULL,
70 0x0123456789abcdefULL, 0xeefedcba98765432ULL,
71 0x0000000000000010ULL, 0x0000000000000001ULL},
72
73 /* Dividend > 64 bits, with MSB 1 */
74 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
75 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
76 0x0000000000000001ULL, 0x0000000000000000ULL},
77 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
78 0x0000000000000001ULL, 0x0000000000000000ULL,
79 0xfeeddccbbaa99887ULL, 0x766554433221100fULL},
80 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
81 0x0feeddccbbaa9988ULL, 0x7766554433221100ULL,
82 0x0000000000000010ULL, 0x000000000000000fULL},
83 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
84 0x000000000000000eULL, 0x00f0f0f0f0f0f35aULL,
85 0x123456789abcdefeULL, 0x0f8922bc55ef90c3ULL},
86
87 /**
88 * Divisor == 64 bits, with MSB 1
89 * and high 64 bits of dividend >= divisor
90 * (for testing normalization)
91 */
92 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
93 0x0000000000000001ULL, 0x0000000000000000ULL,
94 0xfeeddccbbaa99887ULL, 0x766554433221100fULL},
95 { 0xfeeddccbbaa99887ULL, 0x766554433221100fULL,
96 0x0000000000000001ULL, 0xfddbb9977553310aULL,
97 0x8000000000000001ULL, 0x78899aabbccddf05ULL},
98
99 /* Dividend > 64 bits, divisor almost as big */
100 { 0x0000000000000001ULL, 0x23456789abcdef01ULL,
101 0x0000000000000000ULL, 0x000000000000000fULL,
102 0x123456789abcdefeULL, 0x123456789abcde1fULL},
103 };
104
105 static const test_data_signed test_table_signed[] = {
106 /* Positive dividend, positive/negative divisors */
107 { 0x0000000000000000LL, 0x0000000000bc614eULL,
108 0x0000000000000000LL, 0x0000000000bc614eULL,
109 0x0000000000000001LL, 0x0000000000000000LL},
110 { 0x0000000000000000LL, 0x0000000000bc614eULL,
111 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
112 0xffffffffffffffffLL, 0x0000000000000000LL},
113 { 0x0000000000000000LL, 0x0000000000bc614eULL,
114 0x0000000000000000LL, 0x00000000005e30a7ULL,
115 0x0000000000000002LL, 0x0000000000000000LL},
116 { 0x0000000000000000LL, 0x0000000000bc614eULL,
117 0xffffffffffffffffLL, 0xffffffffffa1cf59ULL,
118 0xfffffffffffffffeLL, 0x0000000000000000LL},
119 { 0x0000000000000000LL, 0x0000000000bc614eULL,
120 0x0000000000000000LL, 0x0000000000178c29ULL,
121 0x0000000000000008LL, 0x0000000000000006LL},
122 { 0x0000000000000000LL, 0x0000000000bc614eULL,
123 0xffffffffffffffffLL, 0xffffffffffe873d7ULL,
124 0xfffffffffffffff8LL, 0x0000000000000006LL},
125 { 0x0000000000000000LL, 0x0000000000bc614eULL,
126 0x0000000000000000LL, 0x000000000000550dULL,
127 0x0000000000000237LL, 0x0000000000000183LL},
128 { 0x0000000000000000LL, 0x0000000000bc614eULL,
129 0xffffffffffffffffLL, 0xffffffffffffaaf3ULL,
130 0xfffffffffffffdc9LL, 0x0000000000000183LL},
131
132 /* Negative dividend, positive/negative divisors */
133 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
134 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
135 0x0000000000000001LL, 0x0000000000000000LL},
136 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
137 0x0000000000000000LL, 0x0000000000bc614eULL,
138 0xffffffffffffffffLL, 0x0000000000000000LL},
139 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
140 0xffffffffffffffffLL, 0xffffffffffa1cf59ULL,
141 0x0000000000000002LL, 0x0000000000000000LL},
142 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
143 0x0000000000000000LL, 0x00000000005e30a7ULL,
144 0xfffffffffffffffeLL, 0x0000000000000000LL},
145 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
146 0xffffffffffffffffLL, 0xffffffffffe873d7ULL,
147 0x0000000000000008LL, 0xfffffffffffffffaLL},
148 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
149 0x0000000000000000LL, 0x0000000000178c29ULL,
150 0xfffffffffffffff8LL, 0xfffffffffffffffaLL},
151 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
152 0xffffffffffffffffLL, 0xffffffffffffaaf3ULL,
153 0x0000000000000237LL, 0xfffffffffffffe7dLL},
154 { 0xffffffffffffffffLL, 0xffffffffff439eb2ULL,
155 0x0000000000000000LL, 0x000000000000550dULL,
156 0xfffffffffffffdc9LL, 0xfffffffffffffe7dLL},
157 };
158
test_divu128(void)159 static void test_divu128(void)
160 {
161 int i;
162 uint64_t rem;
163 test_data_unsigned tmp;
164
165 for (i = 0; i < ARRAY_SIZE(test_table_unsigned); ++i) {
166 tmp = test_table_unsigned[i];
167
168 rem = divu128(&tmp.low, &tmp.high, tmp.divisor);
169 g_assert_cmpuint(tmp.low, ==, tmp.rlow);
170 g_assert_cmpuint(tmp.high, ==, tmp.rhigh);
171 g_assert_cmpuint(rem, ==, tmp.remainder);
172 }
173 }
174
test_divs128(void)175 static void test_divs128(void)
176 {
177 int i;
178 int64_t rem;
179 test_data_signed tmp;
180
181 for (i = 0; i < ARRAY_SIZE(test_table_signed); ++i) {
182 tmp = test_table_signed[i];
183
184 rem = divs128(&tmp.low, &tmp.high, tmp.divisor);
185 g_assert_cmpuint(tmp.low, ==, tmp.rlow);
186 g_assert_cmpuint(tmp.high, ==, tmp.rhigh);
187 g_assert_cmpuint(rem, ==, tmp.remainder);
188 }
189 }
190
main(int argc,char ** argv)191 int main(int argc, char **argv)
192 {
193 g_test_init(&argc, &argv, NULL);
194 g_test_add_func("/host-utils/test_divu128", test_divu128);
195 g_test_add_func("/host-utils/test_divs128", test_divs128);
196 return g_test_run();
197 }
198