1 /* 2 * Common Float Helpers 3 * 4 * This contains a series of useful utility routines and a set of 5 * floating point constants useful for exercising the edge cases in 6 * floating point tests. 7 * 8 * Copyright (c) 2019 Linaro 9 * 10 * SPDX-License-Identifier: GPL-3.0-or-later 11 */ 12 13 /* we want additional float type definitions */ 14 #define __STDC_WANT_IEC_60559_BFP_EXT__ 15 #define __STDC_WANT_IEC_60559_TYPES_EXT__ 16 17 #define _GNU_SOURCE 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <inttypes.h> 21 #include <math.h> 22 #include <float.h> 23 #include <fenv.h> 24 25 #include "../float_helpers.h" 26 27 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 28 29 /* 30 * Half Precision Numbers 31 * 32 * Not yet well standardised so we return a plain uint16_t for now. 33 */ 34 35 /* no handy defines for these numbers */ 36 static uint16_t f16_numbers[] = { 37 0xffff, /* -NaN / AHP -Max */ 38 0xfcff, /* -NaN / AHP */ 39 0xfc01, /* -NaN / AHP */ 40 0xfc00, /* -Inf */ 41 0xfbff, /* -Max */ 42 0xc000, /* -2 */ 43 0xbc00, /* -1 */ 44 0x8001, /* -MIN subnormal */ 45 0x8000, /* -0 */ 46 0x0000, /* +0 */ 47 0x0001, /* MIN subnormal */ 48 0x3c00, /* 1 */ 49 0x7bff, /* Max */ 50 0x7c00, /* Inf */ 51 0x7c01, /* NaN / AHP */ 52 0x7cff, /* NaN / AHP */ 53 0x7fff, /* NaN / AHP +Max*/ 54 }; 55 56 static const int num_f16 = ARRAY_SIZE(f16_numbers); 57 58 int get_num_f16(void) 59 { 60 return num_f16; 61 } 62 63 uint16_t get_f16(int i) 64 { 65 return f16_numbers[i % num_f16]; 66 } 67 68 /* only display as hex */ 69 char *fmt_16(uint16_t num) 70 { 71 char *fmt; 72 asprintf(&fmt, "f16(%#04x)", num); 73 return fmt; 74 } 75 76 /* 77 * Single Precision Numbers 78 */ 79 80 #ifndef SNANF 81 /* Signaling NaN macros, if supported. */ 82 # define SNANF (__builtin_nansf ("")) 83 # define SNAN (__builtin_nans ("")) 84 # define SNANL (__builtin_nansl ("")) 85 #endif 86 87 static float f32_numbers[] = { 88 -SNANF, 89 -NAN, 90 -INFINITY, 91 -FLT_MAX, 92 -0x1.1874b2p+103, 93 -0x1.c0bab6p+99, 94 -0x1.31f75p-40, 95 -0x1.505444p-66, 96 -FLT_MIN, 97 0.0, 98 FLT_MIN, 99 0x1p-25, 100 0x1.ffffe6p-25, /* min positive FP16 subnormal */ 101 0x1.ff801ap-15, /* max subnormal FP16 */ 102 0x1.00000cp-14, /* min positive normal FP16 */ 103 1.0, 104 0x1.004p+0, /* smallest float after 1.0 FP16 */ 105 2.0, 106 M_E, M_PI, 107 0x1.ffbep+15, 108 0x1.ffcp+15, /* max FP16 */ 109 0x1.ffc2p+15, 110 0x1.ffbfp+16, 111 0x1.ffcp+16, /* max AFP */ 112 0x1.ffc1p+16, 113 0x1.c0bab6p+99, 114 FLT_MAX, 115 INFINITY, 116 NAN, 117 SNANF 118 }; 119 120 static const int num_f32 = ARRAY_SIZE(f32_numbers); 121 122 int get_num_f32(void) 123 { 124 return num_f32; 125 } 126 127 float get_f32(int i) 128 { 129 return f32_numbers[i % num_f32]; 130 } 131 132 char *fmt_f32(float num) 133 { 134 uint32_t single_as_hex = *(uint32_t *) # 135 char *fmt; 136 asprintf(&fmt, "f32(%02.20a:%#010x)", num, single_as_hex); 137 return fmt; 138 } 139 140 141 /* This allows us to initialise some doubles as pure hex */ 142 typedef union { 143 double d; 144 uint64_t h; 145 } test_doubles; 146 147 static test_doubles f64_numbers[] = { 148 {SNAN}, 149 {-NAN}, 150 {-INFINITY}, 151 {-DBL_MAX}, 152 {-FLT_MAX-1.0}, 153 {-FLT_MAX}, 154 {-1.111E+31}, 155 {-1.111E+30}, /* half prec */ 156 {-2.0}, {-1.0}, 157 {-DBL_MIN}, 158 {-FLT_MIN}, 159 {0.0}, 160 {FLT_MIN}, 161 {2.98023224e-08}, 162 {5.96046E-8}, /* min positive FP16 subnormal */ 163 {6.09756E-5}, /* max subnormal FP16 */ 164 {6.10352E-5}, /* min positive normal FP16 */ 165 {1.0}, 166 {1.0009765625}, /* smallest float after 1.0 FP16 */ 167 {DBL_MIN}, 168 {1.3789972848607228e-308}, 169 {1.4914738736681624e-308}, 170 {1.0}, {2.0}, 171 {M_E}, {M_PI}, 172 {65503.0}, 173 {65504.0}, /* max FP16 */ 174 {65505.0}, 175 {131007.0}, 176 {131008.0}, /* max AFP */ 177 {131009.0}, 178 {.h = 0x41dfffffffc00000 }, /* to int = 0x7fffffff */ 179 {FLT_MAX}, 180 {FLT_MAX + 1.0}, 181 {DBL_MAX}, 182 {INFINITY}, 183 {NAN}, 184 {.h = 0x7ff0000000000001}, /* SNAN */ 185 {SNAN}, 186 }; 187 188 static const int num_f64 = ARRAY_SIZE(f64_numbers); 189 190 int get_num_f64(void) 191 { 192 return num_f64; 193 } 194 195 double get_f64(int i) 196 { 197 return f64_numbers[i % num_f64].d; 198 } 199 200 char *fmt_f64(double num) 201 { 202 uint64_t double_as_hex = *(uint64_t *) # 203 char *fmt; 204 asprintf(&fmt, "f64(%02.20a:%#020" PRIx64 ")", num, double_as_hex); 205 return fmt; 206 } 207 208 /* 209 * Float flags 210 */ 211 char *fmt_flags(void) 212 { 213 int flags = fetestexcept(FE_ALL_EXCEPT); 214 char *fmt; 215 216 if (flags) { 217 asprintf(&fmt, "%s%s%s%s%s", 218 flags & FE_OVERFLOW ? "OVERFLOW " : "", 219 flags & FE_UNDERFLOW ? "UNDERFLOW " : "", 220 flags & FE_DIVBYZERO ? "DIV0 " : "", 221 flags & FE_INEXACT ? "INEXACT " : "", 222 flags & FE_INVALID ? "INVALID" : ""); 223 } else { 224 asprintf(&fmt, "OK"); 225 } 226 227 return fmt; 228 } 229