xref: /openbmc/qemu/tests/tcg/i386/test-i386.c (revision b14df228)
1 /*
2  *  x86 CPU test
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #define _GNU_SOURCE
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <inttypes.h>
24 #include <math.h>
25 #include <signal.h>
26 #include <setjmp.h>
27 #include <errno.h>
28 #include <sys/ucontext.h>
29 #include <sys/mman.h>
30 
31 #if !defined(__x86_64__)
32 //#define TEST_VM86
33 #define TEST_SEGS
34 #endif
35 //#define LINUX_VM86_IOPL_FIX
36 //#define TEST_P4_FLAGS
37 #ifdef __SSE__
38 #define TEST_SSE
39 #define TEST_CMOV  1
40 #define TEST_FCOMI 1
41 #else
42 #undef TEST_SSE
43 #define TEST_CMOV  1
44 #define TEST_FCOMI 1
45 #endif
46 
47 #if defined(__x86_64__)
48 #define FMT64X "%016lx"
49 #define FMTLX "%016lx"
50 #define X86_64_ONLY(x) x
51 #else
52 #define FMT64X "%016" PRIx64
53 #define FMTLX "%08lx"
54 #define X86_64_ONLY(x)
55 #endif
56 
57 #ifdef TEST_VM86
58 #include <asm/vm86.h>
59 #endif
60 
61 #define xglue(x, y) x ## y
62 #define glue(x, y) xglue(x, y)
63 #define stringify(s)	tostring(s)
64 #define tostring(s)	#s
65 
66 #define CC_C   	0x0001
67 #define CC_P 	0x0004
68 #define CC_A	0x0010
69 #define CC_Z	0x0040
70 #define CC_S    0x0080
71 #define CC_O    0x0800
72 
73 #define __init_call	__attribute__ ((unused,__section__ ("initcall")))
74 
75 #define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
76 
77 #if defined(__x86_64__)
78 static inline long i2l(long v)
79 {
80     return v | ((v ^ 0xabcd) << 32);
81 }
82 #else
83 static inline long i2l(long v)
84 {
85     return v;
86 }
87 #endif
88 
89 #define OP add
90 #include "test-i386.h"
91 
92 #define OP sub
93 #include "test-i386.h"
94 
95 #define OP xor
96 #include "test-i386.h"
97 
98 #define OP and
99 #include "test-i386.h"
100 
101 #define OP or
102 #include "test-i386.h"
103 
104 #define OP cmp
105 #include "test-i386.h"
106 
107 #define OP adc
108 #define OP_CC
109 #include "test-i386.h"
110 
111 #define OP sbb
112 #define OP_CC
113 #include "test-i386.h"
114 
115 #define OP inc
116 #define OP_CC
117 #define OP1
118 #include "test-i386.h"
119 
120 #define OP dec
121 #define OP_CC
122 #define OP1
123 #include "test-i386.h"
124 
125 #define OP neg
126 #define OP_CC
127 #define OP1
128 #include "test-i386.h"
129 
130 #define OP not
131 #define OP_CC
132 #define OP1
133 #include "test-i386.h"
134 
135 #undef CC_MASK
136 #define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O)
137 
138 #define OP shl
139 #include "test-i386-shift.h"
140 
141 #define OP shr
142 #include "test-i386-shift.h"
143 
144 #define OP sar
145 #include "test-i386-shift.h"
146 
147 #define OP rol
148 #include "test-i386-shift.h"
149 
150 #define OP ror
151 #include "test-i386-shift.h"
152 
153 #define OP rcr
154 #define OP_CC
155 #include "test-i386-shift.h"
156 
157 #define OP rcl
158 #define OP_CC
159 #include "test-i386-shift.h"
160 
161 #define OP shld
162 #define OP_SHIFTD
163 #define OP_NOBYTE
164 #include "test-i386-shift.h"
165 
166 #define OP shrd
167 #define OP_SHIFTD
168 #define OP_NOBYTE
169 #include "test-i386-shift.h"
170 
171 /* XXX: should be more precise ? */
172 #undef CC_MASK
173 #define CC_MASK (CC_C)
174 
175 #define OP bt
176 #define OP_NOBYTE
177 #include "test-i386-shift.h"
178 
179 #define OP bts
180 #define OP_NOBYTE
181 #include "test-i386-shift.h"
182 
183 #define OP btr
184 #define OP_NOBYTE
185 #include "test-i386-shift.h"
186 
187 #define OP btc
188 #define OP_NOBYTE
189 #include "test-i386-shift.h"
190 
191 /* lea test (modrm support) */
192 #define TEST_LEAQ(STR)\
193 {\
194     asm("lea " STR ", %0"\
195         : "=r" (res)\
196         : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
197     printf("lea %s = " FMTLX "\n", STR, res);\
198 }
199 
200 #define TEST_LEA(STR)\
201 {\
202     asm("lea " STR ", %0"\
203         : "=r" (res)\
204         : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
205     printf("lea %s = " FMTLX "\n", STR, res);\
206 }
207 
208 #define TEST_LEA16(STR)\
209 {\
210     asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\
211         : "=r" (res)\
212         : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\
213     printf("lea %s = %08lx\n", STR, res);\
214 }
215 
216 
217 void test_lea(void)
218 {
219     long eax, ebx, ecx, edx, esi, edi, res;
220     eax = i2l(0x0001);
221     ebx = i2l(0x0002);
222     ecx = i2l(0x0004);
223     edx = i2l(0x0008);
224     esi = i2l(0x0010);
225     edi = i2l(0x0020);
226 
227     TEST_LEA("0x4000");
228 
229     TEST_LEA("(%%eax)");
230     TEST_LEA("(%%ebx)");
231     TEST_LEA("(%%ecx)");
232     TEST_LEA("(%%edx)");
233     TEST_LEA("(%%esi)");
234     TEST_LEA("(%%edi)");
235 
236     TEST_LEA("0x40(%%eax)");
237     TEST_LEA("0x40(%%ebx)");
238     TEST_LEA("0x40(%%ecx)");
239     TEST_LEA("0x40(%%edx)");
240     TEST_LEA("0x40(%%esi)");
241     TEST_LEA("0x40(%%edi)");
242 
243     TEST_LEA("0x4000(%%eax)");
244     TEST_LEA("0x4000(%%ebx)");
245     TEST_LEA("0x4000(%%ecx)");
246     TEST_LEA("0x4000(%%edx)");
247     TEST_LEA("0x4000(%%esi)");
248     TEST_LEA("0x4000(%%edi)");
249 
250     TEST_LEA("(%%eax, %%ecx)");
251     TEST_LEA("(%%ebx, %%edx)");
252     TEST_LEA("(%%ecx, %%ecx)");
253     TEST_LEA("(%%edx, %%ecx)");
254     TEST_LEA("(%%esi, %%ecx)");
255     TEST_LEA("(%%edi, %%ecx)");
256 
257     TEST_LEA("0x40(%%eax, %%ecx)");
258     TEST_LEA("0x4000(%%ebx, %%edx)");
259 
260     TEST_LEA("(%%ecx, %%ecx, 2)");
261     TEST_LEA("(%%edx, %%ecx, 4)");
262     TEST_LEA("(%%esi, %%ecx, 8)");
263 
264     TEST_LEA("(,%%eax, 2)");
265     TEST_LEA("(,%%ebx, 4)");
266     TEST_LEA("(,%%ecx, 8)");
267 
268     TEST_LEA("0x40(,%%eax, 2)");
269     TEST_LEA("0x40(,%%ebx, 4)");
270     TEST_LEA("0x40(,%%ecx, 8)");
271 
272 
273     TEST_LEA("-10(%%ecx, %%ecx, 2)");
274     TEST_LEA("-10(%%edx, %%ecx, 4)");
275     TEST_LEA("-10(%%esi, %%ecx, 8)");
276 
277     TEST_LEA("0x4000(%%ecx, %%ecx, 2)");
278     TEST_LEA("0x4000(%%edx, %%ecx, 4)");
279     TEST_LEA("0x4000(%%esi, %%ecx, 8)");
280 
281 #if defined(__x86_64__)
282     TEST_LEAQ("0x4000");
283     TEST_LEAQ("0x4000(%%rip)");
284 
285     TEST_LEAQ("(%%rax)");
286     TEST_LEAQ("(%%rbx)");
287     TEST_LEAQ("(%%rcx)");
288     TEST_LEAQ("(%%rdx)");
289     TEST_LEAQ("(%%rsi)");
290     TEST_LEAQ("(%%rdi)");
291 
292     TEST_LEAQ("0x40(%%rax)");
293     TEST_LEAQ("0x40(%%rbx)");
294     TEST_LEAQ("0x40(%%rcx)");
295     TEST_LEAQ("0x40(%%rdx)");
296     TEST_LEAQ("0x40(%%rsi)");
297     TEST_LEAQ("0x40(%%rdi)");
298 
299     TEST_LEAQ("0x4000(%%rax)");
300     TEST_LEAQ("0x4000(%%rbx)");
301     TEST_LEAQ("0x4000(%%rcx)");
302     TEST_LEAQ("0x4000(%%rdx)");
303     TEST_LEAQ("0x4000(%%rsi)");
304     TEST_LEAQ("0x4000(%%rdi)");
305 
306     TEST_LEAQ("(%%rax, %%rcx)");
307     TEST_LEAQ("(%%rbx, %%rdx)");
308     TEST_LEAQ("(%%rcx, %%rcx)");
309     TEST_LEAQ("(%%rdx, %%rcx)");
310     TEST_LEAQ("(%%rsi, %%rcx)");
311     TEST_LEAQ("(%%rdi, %%rcx)");
312 
313     TEST_LEAQ("0x40(%%rax, %%rcx)");
314     TEST_LEAQ("0x4000(%%rbx, %%rdx)");
315 
316     TEST_LEAQ("(%%rcx, %%rcx, 2)");
317     TEST_LEAQ("(%%rdx, %%rcx, 4)");
318     TEST_LEAQ("(%%rsi, %%rcx, 8)");
319 
320     TEST_LEAQ("(,%%rax, 2)");
321     TEST_LEAQ("(,%%rbx, 4)");
322     TEST_LEAQ("(,%%rcx, 8)");
323 
324     TEST_LEAQ("0x40(,%%rax, 2)");
325     TEST_LEAQ("0x40(,%%rbx, 4)");
326     TEST_LEAQ("0x40(,%%rcx, 8)");
327 
328 
329     TEST_LEAQ("-10(%%rcx, %%rcx, 2)");
330     TEST_LEAQ("-10(%%rdx, %%rcx, 4)");
331     TEST_LEAQ("-10(%%rsi, %%rcx, 8)");
332 
333     TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)");
334     TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)");
335     TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)");
336 #else
337     /* limited 16 bit addressing test */
338     TEST_LEA16("0x4000");
339     TEST_LEA16("(%%bx)");
340     TEST_LEA16("(%%si)");
341     TEST_LEA16("(%%di)");
342     TEST_LEA16("0x40(%%bx)");
343     TEST_LEA16("0x40(%%si)");
344     TEST_LEA16("0x40(%%di)");
345     TEST_LEA16("0x4000(%%bx)");
346     TEST_LEA16("0x4000(%%si)");
347     TEST_LEA16("(%%bx,%%si)");
348     TEST_LEA16("(%%bx,%%di)");
349     TEST_LEA16("0x40(%%bx,%%si)");
350     TEST_LEA16("0x40(%%bx,%%di)");
351     TEST_LEA16("0x4000(%%bx,%%si)");
352     TEST_LEA16("0x4000(%%bx,%%di)");
353 #endif
354 }
355 
356 #define TEST_JCC(JCC, v1, v2)\
357 {\
358     int res;\
359     asm("movl $1, %0\n\t"\
360         "cmpl %2, %1\n\t"\
361         "j" JCC " 1f\n\t"\
362         "movl $0, %0\n\t"\
363         "1:\n\t"\
364         : "=r" (res)\
365         : "r" (v1), "r" (v2));\
366     printf("%-10s %d\n", "j" JCC, res);\
367 \
368     asm("movl $0, %0\n\t"\
369         "cmpl %2, %1\n\t"\
370         "set" JCC " %b0\n\t"\
371         : "=r" (res)\
372         : "r" (v1), "r" (v2));\
373     printf("%-10s %d\n", "set" JCC, res);\
374  if (TEST_CMOV) {\
375     long val = i2l(1);\
376     long res = i2l(0x12345678);\
377 X86_64_ONLY(\
378     asm("cmpl %2, %1\n\t"\
379         "cmov" JCC "q %3, %0\n\t"\
380         : "=r" (res)\
381         : "r" (v1), "r" (v2), "m" (val), "0" (res));\
382         printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\
383     asm("cmpl %2, %1\n\t"\
384         "cmov" JCC "l %k3, %k0\n\t"\
385         : "=r" (res)\
386         : "r" (v1), "r" (v2), "m" (val), "0" (res));\
387         printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\
388     asm("cmpl %2, %1\n\t"\
389         "cmov" JCC "w %w3, %w0\n\t"\
390         : "=r" (res)\
391         : "r" (v1), "r" (v2), "r" (1), "0" (res));\
392         printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\
393  } \
394 }
395 
396 /* various jump tests */
397 void test_jcc(void)
398 {
399     TEST_JCC("ne", 1, 1);
400     TEST_JCC("ne", 1, 0);
401 
402     TEST_JCC("e", 1, 1);
403     TEST_JCC("e", 1, 0);
404 
405     TEST_JCC("l", 1, 1);
406     TEST_JCC("l", 1, 0);
407     TEST_JCC("l", 1, -1);
408 
409     TEST_JCC("le", 1, 1);
410     TEST_JCC("le", 1, 0);
411     TEST_JCC("le", 1, -1);
412 
413     TEST_JCC("ge", 1, 1);
414     TEST_JCC("ge", 1, 0);
415     TEST_JCC("ge", -1, 1);
416 
417     TEST_JCC("g", 1, 1);
418     TEST_JCC("g", 1, 0);
419     TEST_JCC("g", 1, -1);
420 
421     TEST_JCC("b", 1, 1);
422     TEST_JCC("b", 1, 0);
423     TEST_JCC("b", 1, -1);
424 
425     TEST_JCC("be", 1, 1);
426     TEST_JCC("be", 1, 0);
427     TEST_JCC("be", 1, -1);
428 
429     TEST_JCC("ae", 1, 1);
430     TEST_JCC("ae", 1, 0);
431     TEST_JCC("ae", 1, -1);
432 
433     TEST_JCC("a", 1, 1);
434     TEST_JCC("a", 1, 0);
435     TEST_JCC("a", 1, -1);
436 
437 
438     TEST_JCC("p", 1, 1);
439     TEST_JCC("p", 1, 0);
440 
441     TEST_JCC("np", 1, 1);
442     TEST_JCC("np", 1, 0);
443 
444     TEST_JCC("o", 0x7fffffff, 0);
445     TEST_JCC("o", 0x7fffffff, -1);
446 
447     TEST_JCC("no", 0x7fffffff, 0);
448     TEST_JCC("no", 0x7fffffff, -1);
449 
450     TEST_JCC("s", 0, 1);
451     TEST_JCC("s", 0, -1);
452     TEST_JCC("s", 0, 0);
453 
454     TEST_JCC("ns", 0, 1);
455     TEST_JCC("ns", 0, -1);
456     TEST_JCC("ns", 0, 0);
457 }
458 
459 #define TEST_LOOP(insn) \
460 {\
461     for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\
462         ecx = ecx_vals[i];\
463         for(zf = 0; zf < 2; zf++) {\
464     asm("test %2, %2\n\t"\
465         "movl $1, %0\n\t"\
466           insn " 1f\n\t" \
467         "movl $0, %0\n\t"\
468         "1:\n\t"\
469         : "=a" (res)\
470         : "c" (ecx), "b" (!zf)); \
471     printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res);      \
472         }\
473    }\
474 }
475 
476 void test_loop(void)
477 {
478     long ecx, zf;
479     const long ecx_vals[] = {
480         0,
481         1,
482         0x10000,
483         0x10001,
484 #if defined(__x86_64__)
485         0x100000000L,
486         0x100000001L,
487 #endif
488     };
489     int i, res;
490 
491 #if !defined(__x86_64__)
492     TEST_LOOP("jcxz");
493     TEST_LOOP("loopw");
494     TEST_LOOP("loopzw");
495     TEST_LOOP("loopnzw");
496 #endif
497 
498     TEST_LOOP("jecxz");
499     TEST_LOOP("loopl");
500     TEST_LOOP("loopzl");
501     TEST_LOOP("loopnzl");
502 }
503 
504 #undef CC_MASK
505 #ifdef TEST_P4_FLAGS
506 #define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)
507 #else
508 #define CC_MASK (CC_O | CC_C)
509 #endif
510 
511 #define OP mul
512 #include "test-i386-muldiv.h"
513 
514 #define OP imul
515 #include "test-i386-muldiv.h"
516 
517 void test_imulw2(long op0, long op1)
518 {
519     long res, s1, s0, flags;
520     s0 = op0;
521     s1 = op1;
522     res = s0;
523     flags = 0;
524     asm volatile ("push %4\n\t"
525          "popf\n\t"
526          "imulw %w2, %w0\n\t"
527          "pushf\n\t"
528          "pop %1\n\t"
529          : "=q" (res), "=g" (flags)
530          : "q" (s1), "0" (res), "1" (flags));
531     printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
532            "imulw", s0, s1, res, flags & CC_MASK);
533 }
534 
535 void test_imull2(long op0, long op1)
536 {
537     long res, s1, s0, flags;
538     s0 = op0;
539     s1 = op1;
540     res = s0;
541     flags = 0;
542     asm volatile ("push %4\n\t"
543          "popf\n\t"
544          "imull %k2, %k0\n\t"
545          "pushf\n\t"
546          "pop %1\n\t"
547          : "=q" (res), "=g" (flags)
548          : "q" (s1), "0" (res), "1" (flags));
549     printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
550            "imull", s0, s1, res, flags & CC_MASK);
551 }
552 
553 #if defined(__x86_64__)
554 void test_imulq2(long op0, long op1)
555 {
556     long res, s1, s0, flags;
557     s0 = op0;
558     s1 = op1;
559     res = s0;
560     flags = 0;
561     asm volatile ("push %4\n\t"
562          "popf\n\t"
563          "imulq %2, %0\n\t"
564          "pushf\n\t"
565          "pop %1\n\t"
566          : "=q" (res), "=g" (flags)
567          : "q" (s1), "0" (res), "1" (flags));
568     printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",
569            "imulq", s0, s1, res, flags & CC_MASK);
570 }
571 #endif
572 
573 #define TEST_IMUL_IM(size, rsize, op0, op1)\
574 {\
575     long res, flags, s1;\
576     flags = 0;\
577     res = 0;\
578     s1 = op1;\
579     asm volatile ("push %3\n\t"\
580          "popf\n\t"\
581          "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \
582          "pushf\n\t"\
583          "pop %1\n\t"\
584          : "=r" (res), "=g" (flags)\
585          : "r" (s1), "1" (flags), "0" (res));\
586     printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\
587            "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\
588 }
589 
590 
591 #undef CC_MASK
592 #define CC_MASK (0)
593 
594 #define OP div
595 #include "test-i386-muldiv.h"
596 
597 #define OP idiv
598 #include "test-i386-muldiv.h"
599 
600 void test_mul(void)
601 {
602     test_imulb(0x1234561d, 4);
603     test_imulb(3, -4);
604     test_imulb(0x80, 0x80);
605     test_imulb(0x10, 0x10);
606 
607     test_imulw(0, 0x1234001d, 45);
608     test_imulw(0, 23, -45);
609     test_imulw(0, 0x8000, 0x8000);
610     test_imulw(0, 0x100, 0x100);
611 
612     test_imull(0, 0x1234001d, 45);
613     test_imull(0, 23, -45);
614     test_imull(0, 0x80000000, 0x80000000);
615     test_imull(0, 0x10000, 0x10000);
616 
617     test_mulb(0x1234561d, 4);
618     test_mulb(3, -4);
619     test_mulb(0x80, 0x80);
620     test_mulb(0x10, 0x10);
621 
622     test_mulw(0, 0x1234001d, 45);
623     test_mulw(0, 23, -45);
624     test_mulw(0, 0x8000, 0x8000);
625     test_mulw(0, 0x100, 0x100);
626 
627     test_mull(0, 0x1234001d, 45);
628     test_mull(0, 23, -45);
629     test_mull(0, 0x80000000, 0x80000000);
630     test_mull(0, 0x10000, 0x10000);
631 
632     test_imulw2(0x1234001d, 45);
633     test_imulw2(23, -45);
634     test_imulw2(0x8000, 0x8000);
635     test_imulw2(0x100, 0x100);
636 
637     test_imull2(0x1234001d, 45);
638     test_imull2(23, -45);
639     test_imull2(0x80000000, 0x80000000);
640     test_imull2(0x10000, 0x10000);
641 
642     TEST_IMUL_IM("w", "w", 45, 0x1234);
643     TEST_IMUL_IM("w", "w", -45, 23);
644     TEST_IMUL_IM("w", "w", 0x8000, 0x80000000);
645     TEST_IMUL_IM("w", "w", 0x7fff, 0x1000);
646 
647     TEST_IMUL_IM("l", "k", 45, 0x1234);
648     TEST_IMUL_IM("l", "k", -45, 23);
649     TEST_IMUL_IM("l", "k", 0x8000, 0x80000000);
650     TEST_IMUL_IM("l", "k", 0x7fff, 0x1000);
651 
652     test_idivb(0x12341678, 0x127e);
653     test_idivb(0x43210123, -5);
654     test_idivb(0x12340004, -1);
655 
656     test_idivw(0, 0x12345678, 12347);
657     test_idivw(0, -23223, -45);
658     test_idivw(0, 0x12348000, -1);
659     test_idivw(0x12343, 0x12345678, 0x81238567);
660 
661     test_idivl(0, 0x12345678, 12347);
662     test_idivl(0, -233223, -45);
663     test_idivl(0, 0x80000000, -1);
664     test_idivl(0x12343, 0x12345678, 0x81234567);
665 
666     test_divb(0x12341678, 0x127e);
667     test_divb(0x43210123, -5);
668     test_divb(0x12340004, -1);
669 
670     test_divw(0, 0x12345678, 12347);
671     test_divw(0, -23223, -45);
672     test_divw(0, 0x12348000, -1);
673     test_divw(0x12343, 0x12345678, 0x81238567);
674 
675     test_divl(0, 0x12345678, 12347);
676     test_divl(0, -233223, -45);
677     test_divl(0, 0x80000000, -1);
678     test_divl(0x12343, 0x12345678, 0x81234567);
679 
680 #if defined(__x86_64__)
681     test_imulq(0, 0x1234001d1234001d, 45);
682     test_imulq(0, 23, -45);
683     test_imulq(0, 0x8000000000000000, 0x8000000000000000);
684     test_imulq(0, 0x100000000, 0x100000000);
685 
686     test_mulq(0, 0x1234001d1234001d, 45);
687     test_mulq(0, 23, -45);
688     test_mulq(0, 0x8000000000000000, 0x8000000000000000);
689     test_mulq(0, 0x100000000, 0x100000000);
690 
691     test_imulq2(0x1234001d1234001d, 45);
692     test_imulq2(23, -45);
693     test_imulq2(0x8000000000000000, 0x8000000000000000);
694     test_imulq2(0x100000000, 0x100000000);
695 
696     TEST_IMUL_IM("q", "", 45, 0x12341234);
697     TEST_IMUL_IM("q", "", -45, 23);
698     TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000);
699     TEST_IMUL_IM("q", "", 0x7fff, 0x10000000);
700 
701     test_idivq(0, 0x12345678abcdef, 12347);
702     test_idivq(0, -233223, -45);
703     test_idivq(0, 0x8000000000000000, -1);
704     test_idivq(0x12343, 0x12345678, 0x81234567);
705 
706     test_divq(0, 0x12345678abcdef, 12347);
707     test_divq(0, -233223, -45);
708     test_divq(0, 0x8000000000000000, -1);
709     test_divq(0x12343, 0x12345678, 0x81234567);
710 #endif
711 }
712 
713 #define TEST_BSX(op, size, op0)\
714 {\
715     long res, val, resz;\
716     val = op0;\
717     asm("xor %1, %1\n"\
718         "mov $0x12345678, %0\n"\
719         #op " %" size "2, %" size "0 ; setz %b1" \
720         : "=&r" (res), "=&q" (resz)\
721         : "r" (val));\
722     printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\
723 }
724 
725 void test_bsx(void)
726 {
727     TEST_BSX(bsrw, "w", 0);
728     TEST_BSX(bsrw, "w", 0x12340128);
729     TEST_BSX(bsfw, "w", 0);
730     TEST_BSX(bsfw, "w", 0x12340128);
731     TEST_BSX(bsrl, "k", 0);
732     TEST_BSX(bsrl, "k", 0x00340128);
733     TEST_BSX(bsfl, "k", 0);
734     TEST_BSX(bsfl, "k", 0x00340128);
735 #if defined(__x86_64__)
736     TEST_BSX(bsrq, "", 0);
737     TEST_BSX(bsrq, "", 0x003401281234);
738     TEST_BSX(bsfq, "", 0);
739     TEST_BSX(bsfq, "", 0x003401281234);
740 #endif
741 }
742 
743 /**********************************************/
744 
745 union float64u {
746     double d;
747     uint64_t l;
748 };
749 
750 union float64u q_nan = { .l = 0xFFF8000000000000LL };
751 union float64u s_nan = { .l = 0xFFF0000000000000LL };
752 
753 void test_fops(double a, double b)
754 {
755     printf("a=%f b=%f a+b=%f\n", a, b, a + b);
756     printf("a=%f b=%f a-b=%f\n", a, b, a - b);
757     printf("a=%f b=%f a*b=%f\n", a, b, a * b);
758     printf("a=%f b=%f a/b=%f\n", a, b, a / b);
759     printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b));
760     printf("a=%f sqrt(a)=%f\n", a, sqrt(a));
761     printf("a=%f sin(a)=%f\n", a, sin(a));
762     printf("a=%f cos(a)=%f\n", a, cos(a));
763     printf("a=%f tan(a)=%f\n", a, tan(a));
764     printf("a=%f log(a)=%f\n", a, log(a));
765     printf("a=%f exp(a)=%f\n", a, exp(a));
766     printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b));
767     /* just to test some op combining */
768     printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a)));
769     printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a)));
770     printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a)));
771 
772 }
773 
774 void fpu_clear_exceptions(void)
775 {
776     struct QEMU_PACKED {
777         uint16_t fpuc;
778         uint16_t dummy1;
779         uint16_t fpus;
780         uint16_t dummy2;
781         uint16_t fptag;
782         uint16_t dummy3;
783         uint32_t ignored[4];
784         long double fpregs[8];
785     } float_env32;
786 
787     asm volatile ("fnstenv %0\n" : "=m" (float_env32));
788     float_env32.fpus &= ~0x7f;
789     asm volatile ("fldenv %0\n" : : "m" (float_env32));
790 }
791 
792 /* XXX: display exception bits when supported */
793 #define FPUS_EMASK 0x0000
794 //#define FPUS_EMASK 0x007f
795 
796 void test_fcmp(double a, double b)
797 {
798     long eflags, fpus;
799 
800     fpu_clear_exceptions();
801     asm("fcom %2\n"
802         "fstsw %%ax\n"
803         : "=a" (fpus)
804         : "t" (a), "u" (b));
805     printf("fcom(%f %f)=%04lx\n",
806            a, b, fpus & (0x4500 | FPUS_EMASK));
807     fpu_clear_exceptions();
808     asm("fucom %2\n"
809         "fstsw %%ax\n"
810         : "=a" (fpus)
811         : "t" (a), "u" (b));
812     printf("fucom(%f %f)=%04lx\n",
813            a, b, fpus & (0x4500 | FPUS_EMASK));
814     if (TEST_FCOMI) {
815         /* test f(u)comi instruction */
816         fpu_clear_exceptions();
817         asm("fcomi %3, %2\n"
818             "fstsw %%ax\n"
819             "pushf\n"
820             "pop %0\n"
821             : "=r" (eflags), "=a" (fpus)
822             : "t" (a), "u" (b));
823         printf("fcomi(%f %f)=%04lx %02lx\n",
824                a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
825         fpu_clear_exceptions();
826         asm("fucomi %3, %2\n"
827             "fstsw %%ax\n"
828             "pushf\n"
829             "pop %0\n"
830             : "=r" (eflags), "=a" (fpus)
831             : "t" (a), "u" (b));
832         printf("fucomi(%f %f)=%04lx %02lx\n",
833                a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C));
834     }
835     fpu_clear_exceptions();
836     asm volatile("fxam\n"
837                  "fstsw %%ax\n"
838                  : "=a" (fpus)
839                  : "t" (a));
840     printf("fxam(%f)=%04lx\n", a, fpus & 0x4700);
841     fpu_clear_exceptions();
842 }
843 
844 void test_fcvt(double a)
845 {
846     float fa;
847     long double la;
848     int16_t fpuc;
849     int i;
850     int64_t lla;
851     int ia;
852     int16_t wa;
853     double ra;
854 
855     fa = a;
856     la = a;
857     printf("(float)%f = %f\n", a, fa);
858     printf("(long double)%f = %Lf\n", a, la);
859     printf("a=" FMT64X "\n", *(uint64_t *)&a);
860     printf("la=" FMT64X " %04x\n", *(uint64_t *)&la,
861            *(unsigned short *)((char *)(&la) + 8));
862 
863     /* test all roundings */
864     asm volatile ("fstcw %0" : "=m" (fpuc));
865     for(i=0;i<4;i++) {
866         uint16_t val16;
867         val16 = (fpuc & ~0x0c00) | (i << 10);
868         asm volatile ("fldcw %0" : : "m" (val16));
869         asm volatile ("fists %0" : "=m" (wa) : "t" (a));
870         asm volatile ("fistl %0" : "=m" (ia) : "t" (a));
871         asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st");
872         asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a));
873         asm volatile ("fldcw %0" : : "m" (fpuc));
874         printf("(short)a = %d\n", wa);
875         printf("(int)a = %d\n", ia);
876         printf("(int64_t)a = " FMT64X "\n", lla);
877         printf("rint(a) = %f\n", ra);
878     }
879 }
880 
881 #define TEST(N) \
882     asm("fld" #N : "=t" (a)); \
883     printf("fld" #N "= %f\n", a);
884 
885 void test_fconst(void)
886 {
887     double a;
888     TEST(1);
889     TEST(l2t);
890     TEST(l2e);
891     TEST(pi);
892     TEST(lg2);
893     TEST(ln2);
894     TEST(z);
895 }
896 
897 void test_fbcd(double a)
898 {
899     unsigned short bcd[5];
900     double b;
901 
902     asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st");
903     asm("fbld %1" : "=t" (b) : "m" (bcd[0]));
904     printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n",
905            a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b);
906 }
907 
908 #define TEST_ENV(env, save, restore)\
909 {\
910     memset((env), 0xaa, sizeof(*(env)));\
911     for(i=0;i<5;i++)\
912         asm volatile ("fldl %0" : : "m" (dtab[i]));\
913     asm volatile (save " %0\n" : : "m" (*(env)));\
914     asm volatile (restore " %0\n": : "m" (*(env)));\
915     for(i=0;i<5;i++)\
916         asm volatile ("fstpl %0" : "=m" (rtab[i]));\
917     for(i=0;i<5;i++)\
918         printf("res[%d]=%f\n", i, rtab[i]);\
919     printf("fpuc=%04x fpus=%04x fptag=%04x\n",\
920            (env)->fpuc,\
921            (env)->fpus & 0xff00,\
922            (env)->fptag);\
923 }
924 
925 void test_fenv(void)
926 {
927     struct __attribute__((__packed__)) {
928         uint16_t fpuc;
929         uint16_t dummy1;
930         uint16_t fpus;
931         uint16_t dummy2;
932         uint16_t fptag;
933         uint16_t dummy3;
934         uint32_t ignored[4];
935         long double fpregs[8];
936     } float_env32;
937     struct __attribute__((__packed__)) {
938         uint16_t fpuc;
939         uint16_t fpus;
940         uint16_t fptag;
941         uint16_t ignored[4];
942         long double fpregs[8];
943     } float_env16;
944     double dtab[8];
945     double rtab[8];
946     int i;
947 
948     for(i=0;i<8;i++)
949         dtab[i] = i + 1;
950 
951     TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv");
952     TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor");
953     TEST_ENV(&float_env32, "fnstenv", "fldenv");
954     TEST_ENV(&float_env32, "fnsave", "frstor");
955 
956     /* test for ffree */
957     for(i=0;i<5;i++)
958         asm volatile ("fldl %0" : : "m" (dtab[i]));
959     asm volatile("ffree %st(2)");
960     asm volatile ("fnstenv %0\n" : : "m" (float_env32));
961     asm volatile ("fninit");
962     printf("fptag=%04x\n", float_env32.fptag);
963 }
964 
965 
966 #define TEST_FCMOV(a, b, eflags, CC)\
967 {\
968     double res;\
969     asm("push %3\n"\
970         "popf\n"\
971         "fcmov" CC " %2, %0\n"\
972         : "=t" (res)\
973         : "0" (a), "u" (b), "g" (eflags));\
974     printf("fcmov%s eflags=0x%04lx-> %f\n", \
975            CC, (long)eflags, res);\
976 }
977 
978 void test_fcmov(void)
979 {
980     double a, b;
981     long eflags, i;
982 
983     a = 1.0;
984     b = 2.0;
985     for(i = 0; i < 4; i++) {
986         eflags = 0;
987         if (i & 1)
988             eflags |= CC_C;
989         if (i & 2)
990             eflags |= CC_Z;
991         TEST_FCMOV(a, b, eflags, "b");
992         TEST_FCMOV(a, b, eflags, "e");
993         TEST_FCMOV(a, b, eflags, "be");
994         TEST_FCMOV(a, b, eflags, "nb");
995         TEST_FCMOV(a, b, eflags, "ne");
996         TEST_FCMOV(a, b, eflags, "nbe");
997     }
998     TEST_FCMOV(a, b, 0, "u");
999     TEST_FCMOV(a, b, CC_P, "u");
1000     TEST_FCMOV(a, b, 0, "nu");
1001     TEST_FCMOV(a, b, CC_P, "nu");
1002 }
1003 
1004 void test_floats(void)
1005 {
1006     test_fops(2, 3);
1007     test_fops(1.4, -5);
1008     test_fcmp(2, -1);
1009     test_fcmp(2, 2);
1010     test_fcmp(2, 3);
1011     test_fcmp(2, q_nan.d);
1012     test_fcmp(q_nan.d, -1);
1013     test_fcmp(-1.0/0.0, -1);
1014     test_fcmp(1.0/0.0, -1);
1015     test_fcvt(0.5);
1016     test_fcvt(-0.5);
1017     test_fcvt(1.0/7.0);
1018     test_fcvt(-1.0/9.0);
1019     test_fcvt(32768);
1020     test_fcvt(-1e20);
1021     test_fcvt(-1.0/0.0);
1022     test_fcvt(1.0/0.0);
1023     test_fcvt(q_nan.d);
1024     test_fconst();
1025     test_fbcd(1234567890123456.0);
1026     test_fbcd(-123451234567890.0);
1027     test_fenv();
1028     if (TEST_CMOV) {
1029         test_fcmov();
1030     }
1031 }
1032 
1033 /**********************************************/
1034 #if !defined(__x86_64__)
1035 
1036 #define TEST_BCD(op, op0, cc_in, cc_mask)\
1037 {\
1038     int res, flags;\
1039     res = op0;\
1040     flags = cc_in;\
1041     asm ("push %3\n\t"\
1042          "popf\n\t"\
1043          #op "\n\t"\
1044          "pushf\n\t"\
1045          "pop %1\n\t"\
1046         : "=a" (res), "=g" (flags)\
1047         : "0" (res), "1" (flags));\
1048     printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\
1049            #op, op0, res, cc_in, flags & cc_mask);\
1050 }
1051 
1052 void test_bcd(void)
1053 {
1054     TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1055     TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1056     TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1057     TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1058     TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1059     TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1060     TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1061     TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1062     TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1063     TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1064     TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1065     TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1066     TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1067 
1068     TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1069     TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1070     TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1071     TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1072     TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1073     TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1074     TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1075     TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1076     TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1077     TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1078     TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1079     TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1080     TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A));
1081 
1082     TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A));
1083     TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A));
1084     TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A));
1085     TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A));
1086     TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A));
1087     TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A));
1088     TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A));
1089     TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A));
1090 
1091     TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A));
1092     TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A));
1093     TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A));
1094     TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A));
1095     TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A));
1096     TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A));
1097     TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A));
1098     TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A));
1099 
1100     TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1101     TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));
1102 }
1103 #endif
1104 
1105 #define TEST_XCHG(op, size, opconst)\
1106 {\
1107     long op0, op1;\
1108     op0 = i2l(0x12345678);\
1109     op1 = i2l(0xfbca7654);\
1110     asm(#op " %" size "0, %" size "1" \
1111         : "=q" (op0), opconst (op1) \
1112         : "0" (op0));\
1113     printf("%-10s A=" FMTLX " B=" FMTLX "\n",\
1114            #op, op0, op1);\
1115 }
1116 
1117 #define TEST_CMPXCHG(op, size, opconst, eax)\
1118 {\
1119     long op0, op1, op2;\
1120     op0 = i2l(0x12345678);\
1121     op1 = i2l(0xfbca7654);\
1122     op2 = i2l(eax);\
1123     asm(#op " %" size "0, %" size "1" \
1124         : "=q" (op0), opconst (op1) \
1125         : "0" (op0), "a" (op2));\
1126     printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\
1127            #op, op2, op0, op1);\
1128 }
1129 
1130 void test_xchg(void)
1131 {
1132 #if defined(__x86_64__)
1133     TEST_XCHG(xchgq, "", "+q");
1134 #endif
1135     TEST_XCHG(xchgl, "k", "+q");
1136     TEST_XCHG(xchgw, "w", "+q");
1137     TEST_XCHG(xchgb, "b", "+q");
1138 
1139 #if defined(__x86_64__)
1140     TEST_XCHG(xchgq, "", "+m");
1141 #endif
1142     TEST_XCHG(xchgl, "k", "+m");
1143     TEST_XCHG(xchgw, "w", "+m");
1144     TEST_XCHG(xchgb, "b", "+m");
1145 
1146 #if defined(__x86_64__)
1147     TEST_XCHG(xaddq, "", "+q");
1148 #endif
1149     TEST_XCHG(xaddl, "k", "+q");
1150     TEST_XCHG(xaddw, "w", "+q");
1151     TEST_XCHG(xaddb, "b", "+q");
1152 
1153     {
1154         int res;
1155         res = 0x12345678;
1156         asm("xaddl %1, %0" : "=r" (res) : "0" (res));
1157         printf("xaddl same res=%08x\n", res);
1158     }
1159 
1160 #if defined(__x86_64__)
1161     TEST_XCHG(xaddq, "", "+m");
1162 #endif
1163     TEST_XCHG(xaddl, "k", "+m");
1164     TEST_XCHG(xaddw, "w", "+m");
1165     TEST_XCHG(xaddb, "b", "+m");
1166 
1167 #if defined(__x86_64__)
1168     TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654);
1169 #endif
1170     TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654);
1171     TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654);
1172     TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654);
1173 
1174 #if defined(__x86_64__)
1175     TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc);
1176 #endif
1177     TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc);
1178     TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc);
1179     TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc);
1180 
1181 #if defined(__x86_64__)
1182     TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654);
1183 #endif
1184     TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654);
1185     TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654);
1186     TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654);
1187 
1188 #if defined(__x86_64__)
1189     TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc);
1190 #endif
1191     TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc);
1192     TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc);
1193     TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc);
1194 
1195     {
1196         uint64_t op0, op1, op2;
1197         long eax, edx;
1198         long i, eflags;
1199 
1200         for(i = 0; i < 2; i++) {
1201             op0 = 0x123456789abcdLL;
1202             eax = i2l(op0 & 0xffffffff);
1203             edx = i2l(op0 >> 32);
1204             if (i == 0)
1205                 op1 = 0xfbca765423456LL;
1206             else
1207                 op1 = op0;
1208             op2 = 0x6532432432434LL;
1209             asm("cmpxchg8b %2\n"
1210                 "pushf\n"
1211                 "pop %3\n"
1212                 : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags)
1213                 : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32)));
1214             printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n",
1215                    eax, edx, op1, eflags & CC_Z);
1216         }
1217     }
1218 }
1219 
1220 #ifdef TEST_SEGS
1221 /**********************************************/
1222 /* segmentation tests */
1223 
1224 #include <sys/syscall.h>
1225 #include <unistd.h>
1226 #include <asm/ldt.h>
1227 #include <linux/version.h>
1228 
1229 static inline int modify_ldt(int func, void * ptr, unsigned long bytecount)
1230 {
1231     return syscall(__NR_modify_ldt, func, ptr, bytecount);
1232 }
1233 
1234 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
1235 #define modify_ldt_ldt_s user_desc
1236 #endif
1237 
1238 #define MK_SEL(n) (((n) << 3) | 7)
1239 
1240 uint8_t seg_data1[4096];
1241 uint8_t seg_data2[4096];
1242 
1243 #define TEST_LR(op, size, seg, mask)\
1244 {\
1245     int res, res2;\
1246     uint16_t mseg = seg;\
1247     res = 0x12345678;\
1248     asm (op " %" size "2, %" size "0\n" \
1249          "movl $0, %1\n"\
1250          "jnz 1f\n"\
1251          "movl $1, %1\n"\
1252          "1:\n"\
1253          : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\
1254     printf(op ": Z=%d %08x\n", res2, res & ~(mask));\
1255 }
1256 
1257 #define TEST_ARPL(op, size, op1, op2)\
1258 {\
1259     long a, b, c;                               \
1260     a = (op1);                                  \
1261     b = (op2);                                  \
1262     asm volatile(op " %" size "3, %" size "0\n"\
1263                  "movl $0,%1\n"\
1264                  "jnz 1f\n"\
1265                  "movl $1,%1\n"\
1266                  "1:\n"\
1267                  : "=r" (a), "=r" (c) : "0" (a), "r" (b));    \
1268     printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\
1269            (long)(op1), (long)(op2), a, c);\
1270 }
1271 
1272 /* NOTE: we use Linux modify_ldt syscall */
1273 void test_segs(void)
1274 {
1275     struct modify_ldt_ldt_s ldt;
1276     long long ldt_table[3];
1277     int res, res2;
1278     char tmp;
1279     struct {
1280         uint32_t offset;
1281         uint16_t seg;
1282     } __attribute__((__packed__)) segoff;
1283 
1284     ldt.entry_number = 1;
1285     ldt.base_addr = (unsigned long)&seg_data1;
1286     ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1287     ldt.seg_32bit = 1;
1288     ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1289     ldt.read_exec_only = 0;
1290     ldt.limit_in_pages = 1;
1291     ldt.seg_not_present = 0;
1292     ldt.useable = 1;
1293     modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1294 
1295     ldt.entry_number = 2;
1296     ldt.base_addr = (unsigned long)&seg_data2;
1297     ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12;
1298     ldt.seg_32bit = 1;
1299     ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1300     ldt.read_exec_only = 0;
1301     ldt.limit_in_pages = 1;
1302     ldt.seg_not_present = 0;
1303     ldt.useable = 1;
1304     modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1305 
1306     modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */
1307 #if 0
1308     {
1309         int i;
1310         for(i=0;i<3;i++)
1311             printf("%d: %016Lx\n", i, ldt_table[i]);
1312     }
1313 #endif
1314     /* do some tests with fs or gs */
1315     asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1316 
1317     seg_data1[1] = 0xaa;
1318     seg_data2[1] = 0x55;
1319 
1320     asm volatile ("fs movzbl 0x1, %0" : "=r" (res));
1321     printf("FS[1] = %02x\n", res);
1322 
1323     asm volatile ("pushl %%gs\n"
1324                   "movl %1, %%gs\n"
1325                   "gs movzbl 0x1, %0\n"
1326                   "popl %%gs\n"
1327                   : "=r" (res)
1328                   : "r" (MK_SEL(2)));
1329     printf("GS[1] = %02x\n", res);
1330 
1331     /* tests with ds/ss (implicit segment case) */
1332     tmp = 0xa5;
1333     asm volatile ("pushl %%ebp\n\t"
1334                   "pushl %%ds\n\t"
1335                   "movl %2, %%ds\n\t"
1336                   "movl %3, %%ebp\n\t"
1337                   "movzbl 0x1, %0\n\t"
1338                   "movzbl (%%ebp), %1\n\t"
1339                   "popl %%ds\n\t"
1340                   "popl %%ebp\n\t"
1341                   : "=r" (res), "=r" (res2)
1342                   : "r" (MK_SEL(1)), "r" (&tmp));
1343     printf("DS[1] = %02x\n", res);
1344     printf("SS[tmp] = %02x\n", res2);
1345 
1346     segoff.seg = MK_SEL(2);
1347     segoff.offset = 0xabcdef12;
1348     asm volatile("lfs %2, %0\n\t"
1349                  "movl %%fs, %1\n\t"
1350                  : "=r" (res), "=g" (res2)
1351                  : "m" (segoff));
1352     printf("FS:reg = %04x:%08x\n", res2, res);
1353 
1354     TEST_LR("larw", "w", MK_SEL(2), 0x0100);
1355     TEST_LR("larl", "", MK_SEL(2), 0x0100);
1356     TEST_LR("lslw", "w", MK_SEL(2), 0);
1357     TEST_LR("lsll", "", MK_SEL(2), 0);
1358 
1359     TEST_LR("larw", "w", 0xfff8, 0);
1360     TEST_LR("larl", "", 0xfff8, 0);
1361     TEST_LR("lslw", "w", 0xfff8, 0);
1362     TEST_LR("lsll", "", 0xfff8, 0);
1363 
1364     TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1);
1365     TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3);
1366     TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1);
1367 }
1368 
1369 /* 16 bit code test */
1370 extern char code16_start, code16_end;
1371 extern char code16_func1;
1372 extern char code16_func2;
1373 extern char code16_func3;
1374 
1375 void test_code16(void)
1376 {
1377     struct modify_ldt_ldt_s ldt;
1378     int res, res2;
1379 
1380     /* build a code segment */
1381     ldt.entry_number = 1;
1382     ldt.base_addr = (unsigned long)&code16_start;
1383     ldt.limit = &code16_end - &code16_start;
1384     ldt.seg_32bit = 0;
1385     ldt.contents = MODIFY_LDT_CONTENTS_CODE;
1386     ldt.read_exec_only = 0;
1387     ldt.limit_in_pages = 0;
1388     ldt.seg_not_present = 0;
1389     ldt.useable = 1;
1390     modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1391 
1392     /* call the first function */
1393     asm volatile ("lcall %1, %2"
1394                   : "=a" (res)
1395                   : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc");
1396     printf("func1() = 0x%08x\n", res);
1397     asm volatile ("lcall %2, %3"
1398                   : "=a" (res), "=c" (res2)
1399                   : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc");
1400     printf("func2() = 0x%08x spdec=%d\n", res, res2);
1401     asm volatile ("lcall %1, %2"
1402                   : "=a" (res)
1403                   : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc");
1404     printf("func3() = 0x%08x\n", res);
1405 }
1406 #endif
1407 
1408 #if defined(__x86_64__)
1409 asm(".globl func_lret\n"
1410     "func_lret:\n"
1411     "movl $0x87654641, %eax\n"
1412     "lretq\n");
1413 #else
1414 asm(".globl func_lret\n"
1415     "func_lret:\n"
1416     "movl $0x87654321, %eax\n"
1417     "lret\n"
1418 
1419     ".globl func_iret\n"
1420     "func_iret:\n"
1421     "movl $0xabcd4321, %eax\n"
1422     "iret\n");
1423 #endif
1424 
1425 extern char func_lret;
1426 extern char func_iret;
1427 
1428 void test_misc(void)
1429 {
1430     char table[256];
1431     long res, i;
1432 
1433     for(i=0;i<256;i++) table[i] = 256 - i;
1434     res = 0x12345678;
1435     asm ("xlat" : "=a" (res) : "b" (table), "0" (res));
1436     printf("xlat: EAX=" FMTLX "\n", res);
1437 
1438 #if defined(__x86_64__)
1439 #if 0
1440     {
1441         /* XXX: see if Intel Core2 and AMD64 behavior really
1442            differ. Here we implemented the Intel way which is not
1443            compatible yet with QEMU. */
1444         static struct QEMU_PACKED {
1445             uint64_t offset;
1446             uint16_t seg;
1447         } desc;
1448         long cs_sel;
1449 
1450         asm volatile ("mov %%cs, %0" : "=r" (cs_sel));
1451 
1452         asm volatile ("push %1\n"
1453                       "call func_lret\n"
1454                       : "=a" (res)
1455                       : "r" (cs_sel) : "memory", "cc");
1456         printf("func_lret=" FMTLX "\n", res);
1457 
1458         desc.offset = (long)&func_lret;
1459         desc.seg = cs_sel;
1460 
1461         asm volatile ("xor %%rax, %%rax\n"
1462                       "rex64 lcall *(%%rcx)\n"
1463                       : "=a" (res)
1464                       : "c" (&desc)
1465                       : "memory", "cc");
1466         printf("func_lret2=" FMTLX "\n", res);
1467 
1468         asm volatile ("push %2\n"
1469                       "mov $ 1f, %%rax\n"
1470                       "push %%rax\n"
1471                       "rex64 ljmp *(%%rcx)\n"
1472                       "1:\n"
1473                       : "=a" (res)
1474                       : "c" (&desc), "b" (cs_sel)
1475                       : "memory", "cc");
1476         printf("func_lret3=" FMTLX "\n", res);
1477     }
1478 #endif
1479 #else
1480     asm volatile ("push %%cs ; call %1"
1481                   : "=a" (res)
1482                   : "m" (func_lret): "memory", "cc");
1483     printf("func_lret=" FMTLX "\n", res);
1484 
1485     asm volatile ("pushf ; push %%cs ; call %1"
1486                   : "=a" (res)
1487                   : "m" (func_iret): "memory", "cc");
1488     printf("func_iret=" FMTLX "\n", res);
1489 #endif
1490 
1491 #if defined(__x86_64__)
1492     /* specific popl test */
1493     asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0"
1494                   : "=g" (res));
1495     printf("popl esp=" FMTLX "\n", res);
1496 #else
1497     /* specific popl test */
1498     asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0"
1499                   : "=g" (res));
1500     printf("popl esp=" FMTLX "\n", res);
1501 
1502     /* specific popw test */
1503     asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0"
1504                   : "=g" (res));
1505     printf("popw esp=" FMTLX "\n", res);
1506 #endif
1507 }
1508 
1509 uint8_t str_buffer[4096];
1510 
1511 #define TEST_STRING1(OP, size, DF, REP)\
1512 {\
1513     long esi, edi, eax, ecx, eflags;\
1514 \
1515     esi = (long)(str_buffer + sizeof(str_buffer) / 2);\
1516     edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\
1517     eax = i2l(0x12345678);\
1518     ecx = 17;\
1519 \
1520     asm volatile ("push $0\n\t"\
1521                   "popf\n\t"\
1522                   DF "\n\t"\
1523                   REP #OP size "\n\t"\
1524                   "cld\n\t"\
1525                   "pushf\n\t"\
1526                   "pop %4\n\t"\
1527                   : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\
1528                   : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\
1529     printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\
1530            REP #OP size, esi, edi, eax, ecx,\
1531            (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\
1532 }
1533 
1534 #define TEST_STRING(OP, REP)\
1535     TEST_STRING1(OP, "b", "", REP);\
1536     TEST_STRING1(OP, "w", "", REP);\
1537     TEST_STRING1(OP, "l", "", REP);\
1538     X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\
1539     TEST_STRING1(OP, "b", "std", REP);\
1540     TEST_STRING1(OP, "w", "std", REP);\
1541     TEST_STRING1(OP, "l", "std", REP);\
1542     X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP))
1543 
1544 void test_string(void)
1545 {
1546     int i;
1547     for(i = 0;i < sizeof(str_buffer); i++)
1548         str_buffer[i] = i + 0x56;
1549    TEST_STRING(stos, "");
1550    TEST_STRING(stos, "rep ");
1551    TEST_STRING(lods, ""); /* to verify stos */
1552    TEST_STRING(lods, "rep ");
1553    TEST_STRING(movs, "");
1554    TEST_STRING(movs, "rep ");
1555    TEST_STRING(lods, ""); /* to verify stos */
1556 
1557    /* XXX: better tests */
1558    TEST_STRING(scas, "");
1559    TEST_STRING(scas, "repz ");
1560    TEST_STRING(scas, "repnz ");
1561    TEST_STRING(cmps, "");
1562    TEST_STRING(cmps, "repz ");
1563    TEST_STRING(cmps, "repnz ");
1564 }
1565 
1566 #ifdef TEST_VM86
1567 /* VM86 test */
1568 
1569 static inline void set_bit(uint8_t *a, unsigned int bit)
1570 {
1571     a[bit / 8] |= (1 << (bit % 8));
1572 }
1573 
1574 static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
1575 {
1576     return (uint8_t *)((seg << 4) + (reg & 0xffff));
1577 }
1578 
1579 static inline void pushw(struct vm86_regs *r, int val)
1580 {
1581     r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff);
1582     *(uint16_t *)seg_to_linear(r->ss, r->esp) = val;
1583 }
1584 
1585 static inline int vm86(int func, struct vm86plus_struct *v86)
1586 {
1587     return syscall(__NR_vm86, func, v86);
1588 }
1589 
1590 extern char vm86_code_start;
1591 extern char vm86_code_end;
1592 
1593 #define VM86_CODE_CS 0x100
1594 #define VM86_CODE_IP 0x100
1595 
1596 void test_vm86(void)
1597 {
1598     struct vm86plus_struct ctx;
1599     struct vm86_regs *r;
1600     uint8_t *vm86_mem;
1601     int seg, ret;
1602 
1603     vm86_mem = mmap((void *)0x00000000, 0x110000,
1604                     PROT_WRITE | PROT_READ | PROT_EXEC,
1605                     MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
1606     if (vm86_mem == MAP_FAILED) {
1607         printf("ERROR: could not map vm86 memory");
1608         return;
1609     }
1610     memset(&ctx, 0, sizeof(ctx));
1611 
1612     /* init basic registers */
1613     r = &ctx.regs;
1614     r->eip = VM86_CODE_IP;
1615     r->esp = 0xfffe;
1616     seg = VM86_CODE_CS;
1617     r->cs = seg;
1618     r->ss = seg;
1619     r->ds = seg;
1620     r->es = seg;
1621     r->fs = seg;
1622     r->gs = seg;
1623     r->eflags = VIF_MASK;
1624 
1625     /* move code to proper address. We use the same layout as a .com
1626        dos program. */
1627     memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP,
1628            &vm86_code_start, &vm86_code_end - &vm86_code_start);
1629 
1630     /* mark int 0x21 as being emulated */
1631     set_bit((uint8_t *)&ctx.int_revectored, 0x21);
1632 
1633     for(;;) {
1634         ret = vm86(VM86_ENTER, &ctx);
1635         switch(VM86_TYPE(ret)) {
1636         case VM86_INTx:
1637             {
1638                 int int_num, ah, v;
1639 
1640                 int_num = VM86_ARG(ret);
1641                 if (int_num != 0x21)
1642                     goto unknown_int;
1643                 ah = (r->eax >> 8) & 0xff;
1644                 switch(ah) {
1645                 case 0x00: /* exit */
1646                     goto the_end;
1647                 case 0x02: /* write char */
1648                     {
1649                         uint8_t c = r->edx;
1650                         putchar(c);
1651                     }
1652                     break;
1653                 case 0x09: /* write string */
1654                     {
1655                         uint8_t c, *ptr;
1656                         ptr = seg_to_linear(r->ds, r->edx);
1657                         for(;;) {
1658                             c = *ptr++;
1659                             if (c == '$')
1660                                 break;
1661                             putchar(c);
1662                         }
1663                         r->eax = (r->eax & ~0xff) | '$';
1664                     }
1665                     break;
1666                 case 0xff: /* extension: write eflags number in edx */
1667                     v = (int)r->edx;
1668 #ifndef LINUX_VM86_IOPL_FIX
1669                     v &= ~0x3000;
1670 #endif
1671                     printf("%08x\n", v);
1672                     break;
1673                 default:
1674                 unknown_int:
1675                     printf("unsupported int 0x%02x\n", int_num);
1676                     goto the_end;
1677                 }
1678             }
1679             break;
1680         case VM86_SIGNAL:
1681             /* a signal came, we just ignore that */
1682             break;
1683         case VM86_STI:
1684             break;
1685         default:
1686             printf("ERROR: unhandled vm86 return code (0x%x)\n", ret);
1687             goto the_end;
1688         }
1689     }
1690  the_end:
1691     printf("VM86 end\n");
1692     munmap(vm86_mem, 0x110000);
1693 }
1694 #endif
1695 
1696 /* exception tests */
1697 #if defined(__i386__) && !defined(REG_EAX)
1698 #define REG_EAX EAX
1699 #define REG_EBX EBX
1700 #define REG_ECX ECX
1701 #define REG_EDX EDX
1702 #define REG_ESI ESI
1703 #define REG_EDI EDI
1704 #define REG_EBP EBP
1705 #define REG_ESP ESP
1706 #define REG_EIP EIP
1707 #define REG_EFL EFL
1708 #define REG_TRAPNO TRAPNO
1709 #define REG_ERR ERR
1710 #endif
1711 
1712 #if defined(__x86_64__)
1713 #define REG_EIP REG_RIP
1714 #endif
1715 
1716 jmp_buf jmp_env;
1717 int v1;
1718 int tab[2];
1719 
1720 void sig_handler(int sig, siginfo_t *info, void *puc)
1721 {
1722     ucontext_t *uc = puc;
1723 
1724     printf("si_signo=%d si_errno=%d si_code=%d",
1725            info->si_signo, info->si_errno, info->si_code);
1726     printf(" si_addr=0x%08lx",
1727            (unsigned long)info->si_addr);
1728     printf("\n");
1729 
1730     printf("trapno=" FMTLX " err=" FMTLX,
1731            (long)uc->uc_mcontext.gregs[REG_TRAPNO],
1732            (long)uc->uc_mcontext.gregs[REG_ERR]);
1733     printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]);
1734     printf("\n");
1735     longjmp(jmp_env, 1);
1736 }
1737 
1738 void test_exceptions(void)
1739 {
1740     struct sigaction act;
1741     volatile int val;
1742 
1743     act.sa_sigaction = sig_handler;
1744     sigemptyset(&act.sa_mask);
1745     act.sa_flags = SA_SIGINFO | SA_NODEFER;
1746     sigaction(SIGFPE, &act, NULL);
1747     sigaction(SIGILL, &act, NULL);
1748     sigaction(SIGSEGV, &act, NULL);
1749     sigaction(SIGBUS, &act, NULL);
1750     sigaction(SIGTRAP, &act, NULL);
1751 
1752     /* test division by zero reporting */
1753     printf("DIVZ exception:\n");
1754     if (setjmp(jmp_env) == 0) {
1755         /* now divide by zero */
1756         v1 = 0;
1757         v1 = 2 / v1;
1758     }
1759 
1760 #if !defined(__x86_64__)
1761     printf("BOUND exception:\n");
1762     if (setjmp(jmp_env) == 0) {
1763         /* bound exception */
1764         tab[0] = 1;
1765         tab[1] = 10;
1766         asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0]));
1767     }
1768 #endif
1769 
1770 #ifdef TEST_SEGS
1771     printf("segment exceptions:\n");
1772     if (setjmp(jmp_env) == 0) {
1773         /* load an invalid segment */
1774         asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1));
1775     }
1776     if (setjmp(jmp_env) == 0) {
1777         /* null data segment is valid */
1778         asm volatile ("movl %0, %%fs" : : "r" (3));
1779         /* null stack segment */
1780         asm volatile ("movl %0, %%ss" : : "r" (3));
1781     }
1782 
1783     {
1784         struct modify_ldt_ldt_s ldt;
1785         ldt.entry_number = 1;
1786         ldt.base_addr = (unsigned long)&seg_data1;
1787         ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12;
1788         ldt.seg_32bit = 1;
1789         ldt.contents = MODIFY_LDT_CONTENTS_DATA;
1790         ldt.read_exec_only = 0;
1791         ldt.limit_in_pages = 1;
1792         ldt.seg_not_present = 1;
1793         ldt.useable = 1;
1794         modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
1795 
1796         if (setjmp(jmp_env) == 0) {
1797             /* segment not present */
1798             asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1)));
1799         }
1800     }
1801 #endif
1802 
1803     /* test SEGV reporting */
1804     printf("PF exception:\n");
1805     if (setjmp(jmp_env) == 0) {
1806         val = 1;
1807         /* we add a nop to test a weird PC retrieval case */
1808         asm volatile ("nop");
1809         /* now store in an invalid address */
1810         *(char *)0x1234 = 1;
1811     }
1812 
1813     /* test SEGV reporting */
1814     printf("PF exception:\n");
1815     if (setjmp(jmp_env) == 0) {
1816         val = 1;
1817         /* read from an invalid address */
1818         v1 = *(char *)0x1234;
1819     }
1820 
1821     /* test illegal instruction reporting */
1822     printf("UD2 exception:\n");
1823     if (setjmp(jmp_env) == 0) {
1824         /* now execute an invalid instruction */
1825         asm volatile("ud2");
1826     }
1827     printf("lock nop exception:\n");
1828     if (setjmp(jmp_env) == 0) {
1829         /* now execute an invalid instruction */
1830         asm volatile(".byte 0xf0, 0x90");
1831     }
1832 
1833     printf("INT exception:\n");
1834     if (setjmp(jmp_env) == 0) {
1835         asm volatile ("int $0xfd");
1836     }
1837     if (setjmp(jmp_env) == 0) {
1838         asm volatile ("int $0x01");
1839     }
1840     if (setjmp(jmp_env) == 0) {
1841         asm volatile (".byte 0xcd, 0x03");
1842     }
1843     if (setjmp(jmp_env) == 0) {
1844         asm volatile ("int $0x04");
1845     }
1846     if (setjmp(jmp_env) == 0) {
1847         asm volatile ("int $0x05");
1848     }
1849 
1850     printf("INT3 exception:\n");
1851     if (setjmp(jmp_env) == 0) {
1852         asm volatile ("int3");
1853     }
1854 
1855     printf("CLI exception:\n");
1856     if (setjmp(jmp_env) == 0) {
1857         asm volatile ("cli");
1858     }
1859 
1860     printf("STI exception:\n");
1861     if (setjmp(jmp_env) == 0) {
1862         asm volatile ("cli");
1863     }
1864 
1865 #if !defined(__x86_64__)
1866     printf("INTO exception:\n");
1867     if (setjmp(jmp_env) == 0) {
1868         /* overflow exception */
1869         asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff));
1870     }
1871 #endif
1872 
1873     printf("OUTB exception:\n");
1874     if (setjmp(jmp_env) == 0) {
1875         asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0));
1876     }
1877 
1878     printf("INB exception:\n");
1879     if (setjmp(jmp_env) == 0) {
1880         asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321));
1881     }
1882 
1883     printf("REP OUTSB exception:\n");
1884     if (setjmp(jmp_env) == 0) {
1885         asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1));
1886     }
1887 
1888     printf("REP INSB exception:\n");
1889     if (setjmp(jmp_env) == 0) {
1890         asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1));
1891     }
1892 
1893     printf("HLT exception:\n");
1894     if (setjmp(jmp_env) == 0) {
1895         asm volatile ("hlt");
1896     }
1897 
1898     printf("single step exception:\n");
1899     val = 0;
1900     if (setjmp(jmp_env) == 0) {
1901         asm volatile ("pushf\n"
1902                       "orl $0x00100, (%%esp)\n"
1903                       "popf\n"
1904                       "movl $0xabcd, %0\n"
1905                       "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory");
1906     }
1907     printf("val=0x%x\n", val);
1908 }
1909 
1910 #if !defined(__x86_64__)
1911 /* specific precise single step test */
1912 void sig_trap_handler(int sig, siginfo_t *info, void *puc)
1913 {
1914     ucontext_t *uc = puc;
1915     printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]);
1916 }
1917 
1918 const uint8_t sstep_buf1[4] = { 1, 2, 3, 4};
1919 uint8_t sstep_buf2[4];
1920 
1921 void test_single_step(void)
1922 {
1923     struct sigaction act;
1924     volatile int val;
1925     int i;
1926 
1927     val = 0;
1928     act.sa_sigaction = sig_trap_handler;
1929     sigemptyset(&act.sa_mask);
1930     act.sa_flags = SA_SIGINFO;
1931     sigaction(SIGTRAP, &act, NULL);
1932     asm volatile ("pushf\n"
1933                   "orl $0x00100, (%%esp)\n"
1934                   "popf\n"
1935                   "movl $0xabcd, %0\n"
1936 
1937                   /* jmp test */
1938                   "movl $3, %%ecx\n"
1939                   "1:\n"
1940                   "addl $1, %0\n"
1941                   "decl %%ecx\n"
1942                   "jnz 1b\n"
1943 
1944                   /* movsb: the single step should stop at each movsb iteration */
1945                   "movl $sstep_buf1, %%esi\n"
1946                   "movl $sstep_buf2, %%edi\n"
1947                   "movl $0, %%ecx\n"
1948                   "rep movsb\n"
1949                   "movl $3, %%ecx\n"
1950                   "rep movsb\n"
1951                   "movl $1, %%ecx\n"
1952                   "rep movsb\n"
1953 
1954                   /* cmpsb: the single step should stop at each cmpsb iteration */
1955                   "movl $sstep_buf1, %%esi\n"
1956                   "movl $sstep_buf2, %%edi\n"
1957                   "movl $0, %%ecx\n"
1958                   "rep cmpsb\n"
1959                   "movl $4, %%ecx\n"
1960                   "rep cmpsb\n"
1961 
1962                   /* getpid() syscall: single step should skip one
1963                      instruction */
1964                   "movl $20, %%eax\n"
1965                   "int $0x80\n"
1966                   "movl $0, %%eax\n"
1967 
1968                   /* when modifying SS, trace is not done on the next
1969                      instruction */
1970                   "movl %%ss, %%ecx\n"
1971                   "movl %%ecx, %%ss\n"
1972                   "addl $1, %0\n"
1973                   "movl $1, %%eax\n"
1974                   "movl %%ecx, %%ss\n"
1975                   "jmp 1f\n"
1976                   "addl $1, %0\n"
1977                   "1:\n"
1978                   "movl $1, %%eax\n"
1979                   "pushl %%ecx\n"
1980                   "popl %%ss\n"
1981                   "addl $1, %0\n"
1982                   "movl $1, %%eax\n"
1983 
1984                   "pushf\n"
1985                   "andl $~0x00100, (%%esp)\n"
1986                   "popf\n"
1987                   : "=m" (val)
1988                   :
1989                   : "cc", "memory", "eax", "ecx", "esi", "edi");
1990     printf("val=%d\n", val);
1991     for(i = 0; i < 4; i++)
1992         printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]);
1993 }
1994 
1995 /* self modifying code test */
1996 uint8_t code[] = {
1997     0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */
1998     0xc3, /* ret */
1999 };
2000 
2001 asm(".section \".data\"\n"
2002     "smc_code2:\n"
2003     "movl 4(%esp), %eax\n"
2004     "movl %eax, smc_patch_addr2 + 1\n"
2005     "nop\n"
2006     "nop\n"
2007     "nop\n"
2008     "nop\n"
2009     "nop\n"
2010     "nop\n"
2011     "nop\n"
2012     "nop\n"
2013     "smc_patch_addr2:\n"
2014     "movl $1, %eax\n"
2015     "ret\n"
2016     ".previous\n"
2017     );
2018 
2019 typedef int FuncType(void);
2020 extern int smc_code2(int);
2021 void test_self_modifying_code(void)
2022 {
2023     int i;
2024     printf("self modifying code:\n");
2025     printf("func1 = 0x%x\n", ((FuncType *)code)());
2026     for(i = 2; i <= 4; i++) {
2027         code[1] = i;
2028         printf("func%d = 0x%x\n", i, ((FuncType *)code)());
2029     }
2030 
2031     /* more difficult test : the modified code is just after the
2032        modifying instruction. It is forbidden in Intel specs, but it
2033        is used by old DOS programs */
2034     for(i = 2; i <= 4; i++) {
2035         printf("smc_code2(%d) = %d\n", i, smc_code2(i));
2036     }
2037 }
2038 #endif
2039 
2040 long enter_stack[4096];
2041 
2042 #if defined(__x86_64__)
2043 #define RSP "%%rsp"
2044 #define RBP "%%rbp"
2045 #else
2046 #define RSP "%%esp"
2047 #define RBP "%%ebp"
2048 #endif
2049 
2050 #if !defined(__x86_64__)
2051 /* causes an infinite loop, disable it for now.  */
2052 #define TEST_ENTER(size, stack_type, level)
2053 #else
2054 #define TEST_ENTER(size, stack_type, level)\
2055 {\
2056     long esp_save, esp_val, ebp_val, ebp_save, i;\
2057     stack_type *ptr, *stack_end, *stack_ptr;\
2058     memset(enter_stack, 0, sizeof(enter_stack));\
2059     stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\
2060     ebp_val = (long)stack_ptr;\
2061     for(i=1;i<=32;i++)\
2062        *--stack_ptr = i;\
2063     esp_val = (long)stack_ptr;\
2064     asm("mov " RSP ", %[esp_save]\n"\
2065         "mov " RBP ", %[ebp_save]\n"\
2066         "mov %[esp_val], " RSP "\n"\
2067         "mov %[ebp_val], " RBP "\n"\
2068         "enter" size " $8, $" #level "\n"\
2069         "mov " RSP ", %[esp_val]\n"\
2070         "mov " RBP ", %[ebp_val]\n"\
2071         "mov %[esp_save], " RSP "\n"\
2072         "mov %[ebp_save], " RBP "\n"\
2073         : [esp_save] "=r" (esp_save),\
2074         [ebp_save] "=r" (ebp_save),\
2075         [esp_val] "=r" (esp_val),\
2076         [ebp_val] "=r" (ebp_val)\
2077         :  "[esp_val]" (esp_val),\
2078         "[ebp_val]" (ebp_val));\
2079     printf("level=%d:\n", level);\
2080     printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\
2081     printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\
2082     for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\
2083         printf(FMTLX "\n", (long)ptr[0]);\
2084 }
2085 #endif
2086 
2087 static void test_enter(void)
2088 {
2089 #if defined(__x86_64__)
2090     TEST_ENTER("q", uint64_t, 0);
2091     TEST_ENTER("q", uint64_t, 1);
2092     TEST_ENTER("q", uint64_t, 2);
2093     TEST_ENTER("q", uint64_t, 31);
2094 #else
2095     TEST_ENTER("l", uint32_t, 0);
2096     TEST_ENTER("l", uint32_t, 1);
2097     TEST_ENTER("l", uint32_t, 2);
2098     TEST_ENTER("l", uint32_t, 31);
2099 #endif
2100 
2101     TEST_ENTER("w", uint16_t, 0);
2102     TEST_ENTER("w", uint16_t, 1);
2103     TEST_ENTER("w", uint16_t, 2);
2104     TEST_ENTER("w", uint16_t, 31);
2105 }
2106 
2107 #ifdef TEST_SSE
2108 
2109 typedef int __m64 __attribute__ ((vector_size(8)));
2110 typedef float __m128 __attribute__ ((vector_size(16)));
2111 
2112 typedef union {
2113     double d[2];
2114     float s[4];
2115     uint32_t l[4];
2116     uint64_t q[2];
2117     __m128 dq;
2118 } XMMReg;
2119 
2120 static uint64_t __attribute__((aligned(16))) test_values[4][2] = {
2121     { 0x456723c698694873, 0xdc515cff944a58ec },
2122     { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 },
2123     { 0x007c62c2085427f8, 0x231be9e8cde7438d },
2124     { 0x0f76255a085427f8, 0xc233e9e8c4c9439a },
2125 };
2126 
2127 #define SSE_OP(op)\
2128 {\
2129     asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2130     printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2131            #op,\
2132            a.q[1], a.q[0],\
2133            b.q[1], b.q[0],\
2134            r.q[1], r.q[0]);\
2135 }
2136 
2137 #define SSE_OP2(op)\
2138 {\
2139     int i;\
2140     for(i=0;i<2;i++) {\
2141     a.q[0] = test_values[2*i][0];\
2142     a.q[1] = test_values[2*i][1];\
2143     b.q[0] = test_values[2*i+1][0];\
2144     b.q[1] = test_values[2*i+1][1];\
2145     SSE_OP(op);\
2146     }\
2147 }
2148 
2149 #define MMX_OP2(op)\
2150 {\
2151     int i;\
2152     for(i=0;i<2;i++) {\
2153     a.q[0] = test_values[2*i][0];\
2154     b.q[0] = test_values[2*i+1][0];\
2155     asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\
2156     printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\
2157            #op,\
2158            a.q[0],\
2159            b.q[0],\
2160            r.q[0]);\
2161     }\
2162     SSE_OP2(op);\
2163 }
2164 
2165 #define SHUF_OP(op, ib)\
2166 {\
2167     a.q[0] = test_values[0][0];\
2168     a.q[1] = test_values[0][1];\
2169     b.q[0] = test_values[1][0];\
2170     b.q[1] = test_values[1][1];\
2171     asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2172     printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2173            #op,\
2174            a.q[1], a.q[0],\
2175            b.q[1], b.q[0],\
2176            ib,\
2177            r.q[1], r.q[0]);\
2178 }
2179 
2180 #define PSHUF_OP(op, ib)\
2181 {\
2182     int i;\
2183     for(i=0;i<2;i++) {\
2184     a.q[0] = test_values[2*i][0];\
2185     a.q[1] = test_values[2*i][1];\
2186     asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2187     printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2188            #op,\
2189            a.q[1], a.q[0],\
2190            ib,\
2191            r.q[1], r.q[0]);\
2192     }\
2193 }
2194 
2195 #define SHIFT_IM(op, ib)\
2196 {\
2197     int i;\
2198     for(i=0;i<2;i++) {\
2199     a.q[0] = test_values[2*i][0];\
2200     a.q[1] = test_values[2*i][1];\
2201     asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\
2202     printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\
2203            #op,\
2204            a.q[1], a.q[0],\
2205            ib,\
2206            r.q[1], r.q[0]);\
2207     }\
2208 }
2209 
2210 #define SHIFT_OP(op, ib)\
2211 {\
2212     int i;\
2213     SHIFT_IM(op, ib);\
2214     for(i=0;i<2;i++) {\
2215     a.q[0] = test_values[2*i][0];\
2216     a.q[1] = test_values[2*i][1];\
2217     b.q[0] = ib;\
2218     b.q[1] = 0;\
2219     asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\
2220     printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2221            #op,\
2222            a.q[1], a.q[0],\
2223            b.q[1], b.q[0],\
2224            r.q[1], r.q[0]);\
2225     }\
2226 }
2227 
2228 #define MOVMSK(op)\
2229 {\
2230     int i, reg;\
2231     for(i=0;i<2;i++) {\
2232     a.q[0] = test_values[2*i][0];\
2233     a.q[1] = test_values[2*i][1];\
2234     asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\
2235     printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2236            #op,\
2237            a.q[1], a.q[0],\
2238            reg);\
2239     }\
2240 }
2241 
2242 #define SSE_OPS(a) \
2243 SSE_OP(a ## ps);\
2244 SSE_OP(a ## ss);
2245 
2246 #define SSE_OPD(a) \
2247 SSE_OP(a ## pd);\
2248 SSE_OP(a ## sd);
2249 
2250 #define SSE_COMI(op, field)\
2251 {\
2252     unsigned long eflags;\
2253     XMMReg a, b;\
2254     a.field[0] = a1;\
2255     b.field[0] = b1;\
2256     asm volatile (#op " %2, %1\n"\
2257         "pushf\n"\
2258         "pop %0\n"\
2259         : "=rm" (eflags)\
2260         : "x" (a.dq), "x" (b.dq));\
2261     printf("%-9s: a=%f b=%f cc=%04lx\n",\
2262            #op, a1, b1,\
2263            eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\
2264 }
2265 
2266 void test_sse_comi(double a1, double b1)
2267 {
2268     SSE_COMI(ucomiss, s);
2269     SSE_COMI(ucomisd, d);
2270     SSE_COMI(comiss, s);
2271     SSE_COMI(comisd, d);
2272 }
2273 
2274 #define CVT_OP_XMM(op)\
2275 {\
2276     asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\
2277     printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\
2278            #op,\
2279            a.q[1], a.q[0],\
2280            r.q[1], r.q[0]);\
2281 }
2282 
2283 /* Force %xmm0 usage to avoid the case where both register index are 0
2284    to test instruction decoding more extensively */
2285 #define CVT_OP_XMM2MMX(op)\
2286 {\
2287     asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \
2288                   : "%xmm0"); \
2289     asm volatile("emms\n"); \
2290     printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\
2291            #op,\
2292            a.q[1], a.q[0],\
2293            r.q[0]);\
2294 }
2295 
2296 #define CVT_OP_MMX2XMM(op)\
2297 {\
2298     asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\
2299     asm volatile("emms\n"); \
2300     printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\
2301            #op,\
2302            a.q[0],\
2303            r.q[1], r.q[0]);\
2304 }
2305 
2306 #define CVT_OP_REG2XMM(op)\
2307 {\
2308     asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\
2309     printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\
2310            #op,\
2311            a.l[0],\
2312            r.q[1], r.q[0]);\
2313 }
2314 
2315 #define CVT_OP_XMM2REG(op)\
2316 {\
2317     asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\
2318     printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\
2319            #op,\
2320            a.q[1], a.q[0],\
2321            r.l[0]);\
2322 }
2323 
2324 struct fpxstate {
2325     uint16_t fpuc;
2326     uint16_t fpus;
2327     uint16_t fptag;
2328     uint16_t fop;
2329     uint32_t fpuip;
2330     uint16_t cs_sel;
2331     uint16_t dummy0;
2332     uint32_t fpudp;
2333     uint16_t ds_sel;
2334     uint16_t dummy1;
2335     uint32_t mxcsr;
2336     uint32_t mxcsr_mask;
2337     uint8_t fpregs1[8 * 16];
2338     uint8_t xmm_regs[8 * 16];
2339     uint8_t dummy2[224];
2340 };
2341 
2342 static struct fpxstate fpx_state __attribute__((aligned(16)));
2343 static struct fpxstate fpx_state2 __attribute__((aligned(16)));
2344 
2345 void test_fxsave(void)
2346 {
2347     struct fpxstate *fp = &fpx_state;
2348     struct fpxstate *fp2 = &fpx_state2;
2349     int i, nb_xmm;
2350     XMMReg a, b;
2351     a.q[0] = test_values[0][0];
2352     a.q[1] = test_values[0][1];
2353     b.q[0] = test_values[1][0];
2354     b.q[1] = test_values[1][1];
2355 
2356     asm("movdqa %2, %%xmm0\n"
2357         "movdqa %3, %%xmm7\n"
2358 #if defined(__x86_64__)
2359         "movdqa %2, %%xmm15\n"
2360 #endif
2361         " fld1\n"
2362         " fldpi\n"
2363         " fldln2\n"
2364         " fxsave %0\n"
2365         " fxrstor %0\n"
2366         " fxsave %1\n"
2367         " fninit\n"
2368         : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp)
2369         : "m" (a), "m" (b));
2370     printf("fpuc=%04x\n", fp->fpuc);
2371     printf("fpus=%04x\n", fp->fpus);
2372     printf("fptag=%04x\n", fp->fptag);
2373     for(i = 0; i < 3; i++) {
2374         printf("ST%d: " FMT64X " %04x\n",
2375                i,
2376                *(uint64_t *)&fp->fpregs1[i * 16],
2377                *(uint16_t *)&fp->fpregs1[i * 16 + 8]);
2378     }
2379     printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80);
2380 #if defined(__x86_64__)
2381     nb_xmm = 16;
2382 #else
2383     nb_xmm = 8;
2384 #endif
2385     for(i = 0; i < nb_xmm; i++) {
2386         printf("xmm%d: " FMT64X "" FMT64X "\n",
2387                i,
2388                *(uint64_t *)&fp->xmm_regs[i * 16],
2389                *(uint64_t *)&fp->xmm_regs[i * 16 + 8]);
2390     }
2391 }
2392 
2393 void test_sse(void)
2394 {
2395     XMMReg r, a, b;
2396     int i;
2397 
2398     MMX_OP2(punpcklbw);
2399     MMX_OP2(punpcklwd);
2400     MMX_OP2(punpckldq);
2401     MMX_OP2(packsswb);
2402     MMX_OP2(pcmpgtb);
2403     MMX_OP2(pcmpgtw);
2404     MMX_OP2(pcmpgtd);
2405     MMX_OP2(packuswb);
2406     MMX_OP2(punpckhbw);
2407     MMX_OP2(punpckhwd);
2408     MMX_OP2(punpckhdq);
2409     MMX_OP2(packssdw);
2410     MMX_OP2(pcmpeqb);
2411     MMX_OP2(pcmpeqw);
2412     MMX_OP2(pcmpeqd);
2413 
2414     MMX_OP2(paddq);
2415     MMX_OP2(pmullw);
2416     MMX_OP2(psubusb);
2417     MMX_OP2(psubusw);
2418     MMX_OP2(pminub);
2419     MMX_OP2(pand);
2420     MMX_OP2(paddusb);
2421     MMX_OP2(paddusw);
2422     MMX_OP2(pmaxub);
2423     MMX_OP2(pandn);
2424 
2425     MMX_OP2(pmulhuw);
2426     MMX_OP2(pmulhw);
2427 
2428     MMX_OP2(psubsb);
2429     MMX_OP2(psubsw);
2430     MMX_OP2(pminsw);
2431     MMX_OP2(por);
2432     MMX_OP2(paddsb);
2433     MMX_OP2(paddsw);
2434     MMX_OP2(pmaxsw);
2435     MMX_OP2(pxor);
2436     MMX_OP2(pmuludq);
2437     MMX_OP2(pmaddwd);
2438     MMX_OP2(psadbw);
2439     MMX_OP2(psubb);
2440     MMX_OP2(psubw);
2441     MMX_OP2(psubd);
2442     MMX_OP2(psubq);
2443     MMX_OP2(paddb);
2444     MMX_OP2(paddw);
2445     MMX_OP2(paddd);
2446 
2447     MMX_OP2(pavgb);
2448     MMX_OP2(pavgw);
2449 
2450     asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678));
2451     printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]);
2452 
2453     asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678));
2454     printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]);
2455 
2456     a.q[0] = test_values[0][0];
2457     a.q[1] = test_values[0][1];
2458     asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2459     printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2460 
2461     asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2462     printf("%-9s: r=%08x\n", "pextrw", r.l[0]);
2463 
2464     asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0]));
2465     printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2466 
2467     asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq));
2468     printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]);
2469 
2470     {
2471         r.q[0] = -1;
2472         r.q[1] = -1;
2473 
2474         a.q[0] = test_values[0][0];
2475         a.q[1] = test_values[0][1];
2476         b.q[0] = test_values[1][0];
2477         b.q[1] = test_values[1][1];
2478         asm volatile("maskmovq %1, %0" :
2479                      : "y" (a.q[0]), "y" (b.q[0]), "D" (&r)
2480                      : "memory");
2481         printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n",
2482                "maskmov",
2483                r.q[0],
2484                a.q[0],
2485                b.q[0]);
2486         asm volatile("maskmovdqu %1, %0" :
2487                      : "x" (a.dq), "x" (b.dq), "D" (&r)
2488                      : "memory");
2489         printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n",
2490                "maskmov",
2491                r.q[1], r.q[0],
2492                a.q[1], a.q[0],
2493                b.q[1], b.q[0]);
2494     }
2495 
2496     asm volatile ("emms");
2497 
2498     SSE_OP2(punpcklqdq);
2499     SSE_OP2(punpckhqdq);
2500     SSE_OP2(andps);
2501     SSE_OP2(andpd);
2502     SSE_OP2(andnps);
2503     SSE_OP2(andnpd);
2504     SSE_OP2(orps);
2505     SSE_OP2(orpd);
2506     SSE_OP2(xorps);
2507     SSE_OP2(xorpd);
2508 
2509     SSE_OP2(unpcklps);
2510     SSE_OP2(unpcklpd);
2511     SSE_OP2(unpckhps);
2512     SSE_OP2(unpckhpd);
2513 
2514     SHUF_OP(shufps, 0x78);
2515     SHUF_OP(shufpd, 0x02);
2516 
2517     PSHUF_OP(pshufd, 0x78);
2518     PSHUF_OP(pshuflw, 0x78);
2519     PSHUF_OP(pshufhw, 0x78);
2520 
2521     SHIFT_OP(psrlw, 7);
2522     SHIFT_OP(psrlw, 16);
2523     SHIFT_OP(psraw, 7);
2524     SHIFT_OP(psraw, 16);
2525     SHIFT_OP(psllw, 7);
2526     SHIFT_OP(psllw, 16);
2527 
2528     SHIFT_OP(psrld, 7);
2529     SHIFT_OP(psrld, 32);
2530     SHIFT_OP(psrad, 7);
2531     SHIFT_OP(psrad, 32);
2532     SHIFT_OP(pslld, 7);
2533     SHIFT_OP(pslld, 32);
2534 
2535     SHIFT_OP(psrlq, 7);
2536     SHIFT_OP(psrlq, 32);
2537     SHIFT_OP(psllq, 7);
2538     SHIFT_OP(psllq, 32);
2539 
2540     SHIFT_IM(psrldq, 16);
2541     SHIFT_IM(psrldq, 7);
2542     SHIFT_IM(pslldq, 16);
2543     SHIFT_IM(pslldq, 7);
2544 
2545     MOVMSK(movmskps);
2546     MOVMSK(movmskpd);
2547 
2548     /* FPU specific ops */
2549 
2550     {
2551         uint32_t mxcsr;
2552         asm volatile("stmxcsr %0" : "=m" (mxcsr));
2553         printf("mxcsr=%08x\n", mxcsr & 0x1f80);
2554         asm volatile("ldmxcsr %0" : : "m" (mxcsr));
2555     }
2556 
2557     test_sse_comi(2, -1);
2558     test_sse_comi(2, 2);
2559     test_sse_comi(2, 3);
2560     test_sse_comi(2, q_nan.d);
2561     test_sse_comi(q_nan.d, -1);
2562 
2563     for(i = 0; i < 2; i++) {
2564         a.s[0] = 2.7;
2565         a.s[1] = 3.4;
2566         a.s[2] = 4;
2567         a.s[3] = -6.3;
2568         b.s[0] = 45.7;
2569         b.s[1] = 353.4;
2570         b.s[2] = 4;
2571         b.s[3] = 56.3;
2572         if (i == 1) {
2573             a.s[0] = q_nan.d;
2574             b.s[3] = q_nan.d;
2575         }
2576 
2577         SSE_OPS(add);
2578         SSE_OPS(mul);
2579         SSE_OPS(sub);
2580         SSE_OPS(min);
2581         SSE_OPS(div);
2582         SSE_OPS(max);
2583         SSE_OPS(sqrt);
2584         SSE_OPS(cmpeq);
2585         SSE_OPS(cmplt);
2586         SSE_OPS(cmple);
2587         SSE_OPS(cmpunord);
2588         SSE_OPS(cmpneq);
2589         SSE_OPS(cmpnlt);
2590         SSE_OPS(cmpnle);
2591         SSE_OPS(cmpord);
2592 
2593 
2594         a.d[0] = 2.7;
2595         a.d[1] = -3.4;
2596         b.d[0] = 45.7;
2597         b.d[1] = -53.4;
2598         if (i == 1) {
2599             a.d[0] = q_nan.d;
2600             b.d[1] = q_nan.d;
2601         }
2602         SSE_OPD(add);
2603         SSE_OPD(mul);
2604         SSE_OPD(sub);
2605         SSE_OPD(min);
2606         SSE_OPD(div);
2607         SSE_OPD(max);
2608         SSE_OPD(sqrt);
2609         SSE_OPD(cmpeq);
2610         SSE_OPD(cmplt);
2611         SSE_OPD(cmple);
2612         SSE_OPD(cmpunord);
2613         SSE_OPD(cmpneq);
2614         SSE_OPD(cmpnlt);
2615         SSE_OPD(cmpnle);
2616         SSE_OPD(cmpord);
2617     }
2618 
2619     /* float to float/int */
2620     a.s[0] = 2.7;
2621     a.s[1] = 3.4;
2622     a.s[2] = 4;
2623     a.s[3] = -6.3;
2624     CVT_OP_XMM(cvtps2pd);
2625     CVT_OP_XMM(cvtss2sd);
2626     CVT_OP_XMM2MMX(cvtps2pi);
2627     CVT_OP_XMM2MMX(cvttps2pi);
2628     CVT_OP_XMM2REG(cvtss2si);
2629     CVT_OP_XMM2REG(cvttss2si);
2630     CVT_OP_XMM(cvtps2dq);
2631     CVT_OP_XMM(cvttps2dq);
2632 
2633     a.d[0] = 2.6;
2634     a.d[1] = -3.4;
2635     CVT_OP_XMM(cvtpd2ps);
2636     CVT_OP_XMM(cvtsd2ss);
2637     CVT_OP_XMM2MMX(cvtpd2pi);
2638     CVT_OP_XMM2MMX(cvttpd2pi);
2639     CVT_OP_XMM2REG(cvtsd2si);
2640     CVT_OP_XMM2REG(cvttsd2si);
2641     CVT_OP_XMM(cvtpd2dq);
2642     CVT_OP_XMM(cvttpd2dq);
2643 
2644     /* sse/mmx moves */
2645     CVT_OP_XMM2MMX(movdq2q);
2646     CVT_OP_MMX2XMM(movq2dq);
2647 
2648     /* int to float */
2649     a.l[0] = -6;
2650     a.l[1] = 2;
2651     a.l[2] = 100;
2652     a.l[3] = -60000;
2653     CVT_OP_MMX2XMM(cvtpi2ps);
2654     CVT_OP_MMX2XMM(cvtpi2pd);
2655     CVT_OP_REG2XMM(cvtsi2ss);
2656     CVT_OP_REG2XMM(cvtsi2sd);
2657     CVT_OP_XMM(cvtdq2ps);
2658     CVT_OP_XMM(cvtdq2pd);
2659 
2660     /* XXX: test PNI insns */
2661 #if 0
2662     SSE_OP2(movshdup);
2663 #endif
2664     asm volatile ("emms");
2665 }
2666 
2667 #endif
2668 
2669 #define TEST_CONV_RAX(op)\
2670 {\
2671     unsigned long a, r;\
2672     a = i2l(0x8234a6f8);\
2673     r = a;\
2674     asm volatile(#op : "=a" (r) : "0" (r));\
2675     printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\
2676 }
2677 
2678 #define TEST_CONV_RAX_RDX(op)\
2679 {\
2680     unsigned long a, d, r, rh;                   \
2681     a = i2l(0x8234a6f8);\
2682     d = i2l(0x8345a1f2);\
2683     r = a;\
2684     rh = d;\
2685     asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh));   \
2686     printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh);  \
2687 }
2688 
2689 void test_conv(void)
2690 {
2691     TEST_CONV_RAX(cbw);
2692     TEST_CONV_RAX(cwde);
2693 #if defined(__x86_64__)
2694     TEST_CONV_RAX(cdqe);
2695 #endif
2696 
2697     TEST_CONV_RAX_RDX(cwd);
2698     TEST_CONV_RAX_RDX(cdq);
2699 #if defined(__x86_64__)
2700     TEST_CONV_RAX_RDX(cqo);
2701 #endif
2702 
2703     {
2704         unsigned long a, r;
2705         a = i2l(0x12345678);
2706         asm volatile("bswapl %k0" : "=r" (r) : "0" (a));
2707         printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r);
2708     }
2709 #if defined(__x86_64__)
2710     {
2711         unsigned long a, r;
2712         a = i2l(0x12345678);
2713         asm volatile("bswapq %0" : "=r" (r) : "0" (a));
2714         printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r);
2715     }
2716 #endif
2717 }
2718 
2719 extern void *__start_initcall;
2720 extern void *__stop_initcall;
2721 
2722 
2723 int main(int argc, char **argv)
2724 {
2725     void **ptr;
2726     void (*func)(void);
2727 
2728     ptr = &__start_initcall;
2729     while (ptr != &__stop_initcall) {
2730         func = *ptr++;
2731         func();
2732     }
2733     test_bsx();
2734     test_mul();
2735     test_jcc();
2736     test_loop();
2737     test_floats();
2738 #if !defined(__x86_64__)
2739     test_bcd();
2740 #endif
2741     test_xchg();
2742     test_string();
2743     test_misc();
2744     test_lea();
2745 #ifdef TEST_SEGS
2746     test_segs();
2747     test_code16();
2748 #endif
2749 #ifdef TEST_VM86
2750     test_vm86();
2751 #endif
2752 #if !defined(__x86_64__)
2753     test_exceptions();
2754     test_self_modifying_code();
2755     test_single_step();
2756 #endif
2757     test_enter();
2758     test_conv();
2759 #ifdef TEST_SSE
2760     test_sse();
2761     test_fxsave();
2762 #endif
2763     return 0;
2764 }
2765