xref: /openbmc/qemu/tests/qtest/sse-timer-test.c (revision e4751d34)
1 /*
2  * QTest testcase for the SSE timer device
3  *
4  * Copyright (c) 2021 Linaro Limited
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14  * for more details.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "libqtest-single.h"
19 
20 /*
21  * SSE-123/SSE-300 timer in the mps3-an547 board, where it is driven
22  * at 32MHz, so 31.25ns per tick.
23  */
24 #define TIMER_BASE 0x48000000
25 
26 /* PERIPHNSPPC0 register in the SSE-300 Secure Access Configuration block */
27 #define PERIPHNSPPC0 (0x50080000 + 0x70)
28 
29 /* Base of the System Counter control frame */
30 #define COUNTER_BASE 0x58100000
31 
32 /* SSE counter register offsets in the control frame */
33 #define CNTCR 0
34 #define CNTSR 0x4
35 #define CNTCV_LO 0x8
36 #define CNTCV_HI 0xc
37 #define CNTSCR 0x10
38 
39 /* SSE timer register offsets */
40 #define CNTPCT_LO 0
41 #define CNTPCT_HI 4
42 #define CNTFRQ 0x10
43 #define CNTP_CVAL_LO 0x20
44 #define CNTP_CVAL_HI 0x24
45 #define CNTP_TVAL 0x28
46 #define CNTP_CTL 0x2c
47 #define CNTP_AIVAL_LO 0x40
48 #define CNTP_AIVAL_HI 0x44
49 #define CNTP_AIVAL_RELOAD 0x48
50 #define CNTP_AIVAL_CTL 0x4c
51 
52 /* 4 ticks in nanoseconds (so we can work in integers) */
53 #define FOUR_TICKS 125
54 
55 static void clock_step_ticks(uint64_t ticks)
56 {
57     /*
58      * Advance the qtest clock by however many nanoseconds we
59      * need to move the timer forward the specified number of ticks.
60      * ticks must be a multiple of 4, so we get a whole number of ns.
61      */
62     assert(!(ticks & 3));
63     clock_step(FOUR_TICKS * (ticks >> 2));
64 }
65 
66 static void reset_counter_and_timer(void)
67 {
68     /*
69      * Reset the system counter and the timer between tests. This
70      * isn't a full reset, but it's sufficient for what the tests check.
71      */
72     writel(COUNTER_BASE + CNTCR, 0);
73     writel(TIMER_BASE + CNTP_CTL, 0);
74     writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
75     writel(COUNTER_BASE + CNTCV_LO, 0);
76     writel(COUNTER_BASE + CNTCV_HI, 0);
77 }
78 
79 static void test_counter(void)
80 {
81     /* Basic counter functionality test */
82 
83     reset_counter_and_timer();
84     /* The counter should start disabled: check that it doesn't move */
85     clock_step_ticks(100);
86     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 0);
87     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
88     /* Now enable it and check that it does count */
89     writel(COUNTER_BASE + CNTCR, 1);
90     clock_step_ticks(100);
91     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 100);
92     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
93     /* Check the counter scaling functionality */
94     writel(COUNTER_BASE + CNTCR, 0);
95     writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
96     writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
97     clock_step_ticks(160);
98     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 110);
99     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
100 }
101 
102 static void test_timer(void)
103 {
104     /* Basic timer functionality test */
105 
106     reset_counter_and_timer();
107     /*
108      * The timer is behind a Peripheral Protection Controller, and
109      * qtest accesses are always non-secure (no memory attributes),
110      * so we must program the PPC to accept NS transactions.  TIMER0
111      * is on port 0 of PPC0, controlled by bit 0 of this register.
112      */
113     writel(PERIPHNSPPC0, 1);
114     /* We must enable the System Counter or the timer won't run. */
115     writel(COUNTER_BASE + CNTCR, 1);
116 
117     /* Timer starts disabled and with a counter of 0 */
118     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 0);
119     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 0);
120     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
121 
122     /* Turn it on */
123     writel(TIMER_BASE + CNTP_CTL, 1);
124 
125     /* Is the timer ticking? */
126     clock_step_ticks(100);
127     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 100);
128     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
129 
130     /* Set the CompareValue to 4000 ticks */
131     writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
132     writel(TIMER_BASE + CNTP_CVAL_HI, 0);
133 
134     /* Check TVAL view of the counter */
135     g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 3900);
136 
137     /* Advance to the CompareValue mark and check ISTATUS is set */
138     clock_step_ticks(3900);
139     g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 0);
140     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
141 
142     /* Now exercise the auto-reload part of the timer */
143     writel(TIMER_BASE + CNTP_AIVAL_RELOAD, 200);
144     writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
145 
146     /* Check AIVAL was reloaded and that ISTATUS is now clear */
147     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4200);
148     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
149     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
150 
151     /*
152      * Check that when we advance forward to the reload time the interrupt
153      * fires and the value reloads
154      */
155     clock_step_ticks(100);
156     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
157     clock_step_ticks(100);
158     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
159     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4400);
160     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
161 
162     clock_step_ticks(100);
163     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
164     /* Check that writing 0 to CLR clears the interrupt */
165     writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
166     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
167     /* Check that when we move forward to the reload time it fires again */
168     clock_step_ticks(100);
169     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
170     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
171     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
172 
173     /*
174      * Step the clock far enough that we overflow the low half of the
175      * CNTPCT and AIVAL registers, and check that their high halves
176      * give the right values. We do the forward movement in
177      * non-autoinc mode because otherwise it takes forever as the
178      * timer has to emulate all the 'reload at t + N, t + 2N, etc'
179      * steps.
180      */
181     writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
182     clock_step_ticks(0x42ULL << 32);
183     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 4400);
184     g_assert_cmphex(readl(TIMER_BASE + CNTPCT_HI), ==, 0x42);
185 
186     /* Turn on the autoinc again to check AIVAL_HI */
187     writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
188     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
189     g_assert_cmphex(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0x42);
190 }
191 
192 static void test_timer_scale_change(void)
193 {
194     /*
195      * Test that the timer responds correctly to counter
196      * scaling changes while it has an active timer.
197      */
198     reset_counter_and_timer();
199     /* Give ourselves access to the timer, and enable the counter and timer */
200     writel(PERIPHNSPPC0, 1);
201     writel(COUNTER_BASE + CNTCR, 1);
202     writel(TIMER_BASE + CNTP_CTL, 1);
203     /* Set the CompareValue to 4000 ticks */
204     writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
205     writel(TIMER_BASE + CNTP_CVAL_HI, 0);
206     /* Advance halfway and check ISTATUS is not set */
207     clock_step_ticks(2000);
208     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
209     /* Reprogram the counter to run at 1/16th speed */
210     writel(COUNTER_BASE + CNTCR, 0);
211     writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
212     writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
213     /* Advance to where the timer would have fired and check it has not */
214     clock_step_ticks(2000);
215     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
216     /* Advance to where the timer must fire at the new clock rate */
217     clock_step_ticks(29996);
218     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
219     clock_step_ticks(4);
220     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
221 }
222 
223 int main(int argc, char **argv)
224 {
225     int r;
226 
227     g_test_init(&argc, &argv, NULL);
228 
229     qtest_start("-machine mps3-an547");
230 
231     qtest_add_func("/sse-timer/counter", test_counter);
232     qtest_add_func("/sse-timer/timer", test_timer);
233     qtest_add_func("/sse-timer/timer-scale-change", test_timer_scale_change);
234 
235     r = g_test_run();
236 
237     qtest_end();
238 
239     return r;
240 }
241