1 /*
2  * QTest testcase for parallel flash with AMD command set
3  *
4  * Copyright (c) 2019 Stephen Checkoway
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "libqos/libqtest.h"
12 
13 /*
14  * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
15  * a pflash drive. This enables us to test some flash configurations, but not
16  * all. In particular, we're limited to a 16-bit wide flash device.
17  */
18 
19 #define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
20 #define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
21 
22 #define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
23 #define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)
24 
25 /* Use a newtype to keep flash addresses separate from byte addresses. */
26 typedef struct {
27     uint64_t addr;
28 } faddr;
29 #define FLASH_ADDR(x) ((faddr) { .addr = (x) })
30 
31 #define CFI_ADDR FLASH_ADDR(0x55)
32 #define UNLOCK0_ADDR FLASH_ADDR(0x555)
33 #define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
34 
35 #define CFI_CMD 0x98
36 #define UNLOCK0_CMD 0xAA
37 #define UNLOCK1_CMD 0x55
38 #define SECOND_UNLOCK_CMD 0x80
39 #define AUTOSELECT_CMD 0x90
40 #define RESET_CMD 0xF0
41 #define PROGRAM_CMD 0xA0
42 #define SECTOR_ERASE_CMD 0x30
43 #define CHIP_ERASE_CMD 0x10
44 #define UNLOCK_BYPASS_CMD 0x20
45 #define UNLOCK_BYPASS_RESET_CMD 0x00
46 #define ERASE_SUSPEND_CMD 0xB0
47 #define ERASE_RESUME_CMD SECTOR_ERASE_CMD
48 
49 typedef struct {
50     int bank_width;
51 
52     /* Nonuniform block size. */
53     int nb_blocs[4];
54     int sector_len[4];
55 
56     QTestState *qtest;
57 } FlashConfig;
58 
59 static char image_path[] = "/tmp/qtest.XXXXXX";
60 
61 /*
62  * The pflash implementation allows some parameters to be unspecified. We want
63  * to test those configurations but we also need to know the real values in
64  * our testing code. So after we launch qemu, we'll need a new FlashConfig
65  * with the correct values filled in.
66  */
67 static FlashConfig expand_config_defaults(const FlashConfig *c)
68 {
69     FlashConfig ret = *c;
70 
71     if (ret.bank_width == 0) {
72         ret.bank_width = 2;
73     }
74     if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
75         ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
76         ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
77     }
78 
79     /* XXX: Limitations of test harness. */
80     assert(ret.bank_width == 2);
81     return ret;
82 }
83 
84 /*
85  * Return a bit mask suitable for extracting the least significant
86  * status/query response from an interleaved response.
87  */
88 static inline uint64_t device_mask(const FlashConfig *c)
89 {
90     return (uint64_t)-1;
91 }
92 
93 /*
94  * Return a bit mask exactly as long as the bank_width.
95  */
96 static inline uint64_t bank_mask(const FlashConfig *c)
97 {
98     if (c->bank_width == 8) {
99         return (uint64_t)-1;
100     }
101     return (1ULL << (c->bank_width * 8)) - 1ULL;
102 }
103 
104 static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
105                                uint64_t data)
106 {
107     /* Sanity check our tests. */
108     assert((data & ~bank_mask(c)) == 0);
109     uint64_t addr = BASE_ADDR + byte_addr;
110     switch (c->bank_width) {
111     case 1:
112         qtest_writeb(c->qtest, addr, data);
113         break;
114     case 2:
115         qtest_writew(c->qtest, addr, data);
116         break;
117     case 4:
118         qtest_writel(c->qtest, addr, data);
119         break;
120     case 8:
121         qtest_writeq(c->qtest, addr, data);
122         break;
123     default:
124         abort();
125     }
126 }
127 
128 static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
129 {
130     uint64_t addr = BASE_ADDR + byte_addr;
131     switch (c->bank_width) {
132     case 1:
133         return qtest_readb(c->qtest, addr);
134     case 2:
135         return qtest_readw(c->qtest, addr);
136     case 4:
137         return qtest_readl(c->qtest, addr);
138     case 8:
139         return qtest_readq(c->qtest, addr);
140     default:
141         abort();
142     }
143 }
144 
145 /*
146  * Convert a flash address expressed in the maximum width of the device as a
147  * byte address.
148  */
149 static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
150 {
151     /*
152      * Command addresses are always given as addresses in the maximum
153      * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
154      * uses addresses 0xAAA and 0x555 to unlock because the least significant
155      * bit is ignored. (0x555 rather than 0x554 is traditional.)
156      *
157      * In general we need to multiply by the maximum device width.
158      */
159     return flash_addr.addr * c->bank_width;
160 }
161 
162 /*
163  * Return the command value or expected status replicated across all devices.
164  */
165 static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
166 {
167     /* Sanity check our tests. */
168     assert((data & ~device_mask(c)) == 0);
169     return data;
170 }
171 
172 static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
173                              uint8_t cmd)
174 {
175     flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
176 }
177 
178 static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
179 {
180     return flash_read(c, as_byte_addr(c, query_addr));
181 }
182 
183 static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
184 {
185     return flash_query(c, query_addr) & device_mask(c);
186 }
187 
188 static void unlock(const FlashConfig *c)
189 {
190     flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
191     flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
192 }
193 
194 static void reset(const FlashConfig *c)
195 {
196     flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
197 }
198 
199 static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
200 {
201     unlock(c);
202     flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
203     unlock(c);
204     flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
205 }
206 
207 static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
208 {
209     /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
210     const uint64_t dq6 = replicate(c, 0x40);
211     if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
212         /* Wait for erase or program to finish. */
213         qtest_clock_step_next(c->qtest);
214         /* Ensure that DQ6 has stopped toggling. */
215         g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
216     }
217 }
218 
219 static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
220                            uint16_t data)
221 {
222     flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
223     flash_write(c, byte_addr, data);
224     /*
225      * Data isn't valid until DQ6 stops toggling. We don't model this as
226      * writes are immediate, but if this changes in the future, we can wait
227      * until the program is complete.
228      */
229     wait_for_completion(c, byte_addr);
230 }
231 
232 static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
233 {
234     unlock(c);
235     bypass_program(c, byte_addr, data);
236 }
237 
238 static void chip_erase(const FlashConfig *c)
239 {
240     unlock(c);
241     flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
242     unlock(c);
243     flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
244 }
245 
246 static void erase_suspend(const FlashConfig *c)
247 {
248     flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD);
249 }
250 
251 static void erase_resume(const FlashConfig *c)
252 {
253     flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD);
254 }
255 
256 /*
257  * Test flash commands with a variety of device geometry.
258  */
259 static void test_geometry(const void *opaque)
260 {
261     const FlashConfig *config = opaque;
262     QTestState *qtest;
263     qtest = qtest_initf("-M musicpal"
264                         " -drive if=pflash,file=%s,format=raw,copy-on-read"
265                         /* Device geometry properties. */
266                         " -global driver=cfi.pflash02,"
267                         "property=num-blocks0,value=%d"
268                         " -global driver=cfi.pflash02,"
269                         "property=sector-length0,value=%d"
270                         " -global driver=cfi.pflash02,"
271                         "property=num-blocks1,value=%d"
272                         " -global driver=cfi.pflash02,"
273                         "property=sector-length1,value=%d"
274                         " -global driver=cfi.pflash02,"
275                         "property=num-blocks2,value=%d"
276                         " -global driver=cfi.pflash02,"
277                         "property=sector-length2,value=%d"
278                         " -global driver=cfi.pflash02,"
279                         "property=num-blocks3,value=%d"
280                         " -global driver=cfi.pflash02,"
281                         "property=sector-length3,value=%d",
282                         image_path,
283                         config->nb_blocs[0],
284                         config->sector_len[0],
285                         config->nb_blocs[1],
286                         config->sector_len[1],
287                         config->nb_blocs[2],
288                         config->sector_len[2],
289                         config->nb_blocs[3],
290                         config->sector_len[3]);
291     FlashConfig explicit_config = expand_config_defaults(config);
292     explicit_config.qtest = qtest;
293     const FlashConfig *c = &explicit_config;
294 
295     /* Check the IDs. */
296     unlock(c);
297     flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
298     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
299     if (c->bank_width >= 2) {
300         /*
301          * XXX: The ID returned by the musicpal flash chip is 16 bits which
302          * wouldn't happen with an 8-bit device. It would probably be best to
303          * prohibit addresses larger than the device width in pflash_cfi02.c,
304          * but then we couldn't test smaller device widths at all.
305          */
306         g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
307                         replicate(c, 0x236D));
308     }
309     reset(c);
310 
311     /* Check the erase blocks. */
312     flash_cmd(c, CFI_ADDR, CFI_CMD);
313     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
314     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
315     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
316 
317     /* Num erase regions. */
318     int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
319     g_assert_cmphex(nb_erase_regions, ==,
320                     !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
321                     !!c->nb_blocs[3]);
322 
323     /* Check device length. */
324     uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
325     g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);
326 
327     /* Check that erase suspend to read/write is supported. */
328     uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) +
329                    (flash_query_1(c, FLASH_ADDR(0x16)) << 8);
330     g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions);
331     g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P'));
332     g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R'));
333     g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I'));
334     g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */
335     reset(c);
336 
337     const uint64_t dq7 = replicate(c, 0x80);
338     const uint64_t dq6 = replicate(c, 0x40);
339     const uint64_t dq3 = replicate(c, 0x08);
340     const uint64_t dq2 = replicate(c, 0x04);
341 
342     uint64_t byte_addr = 0;
343     for (int region = 0; region < nb_erase_regions; ++region) {
344         uint64_t base = 0x2D + 4 * region;
345         flash_cmd(c, CFI_ADDR, CFI_CMD);
346         uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
347                               (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
348         uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
349                               (flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
350         g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
351         g_assert_cmphex(sector_len, ==, c->sector_len[region]);
352         reset(c);
353 
354         /* Erase and program sector. */
355         for (uint32_t i = 0; i < nb_sectors; ++i) {
356             sector_erase(c, byte_addr);
357 
358             /* Check that DQ3 is 0. */
359             g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0);
360             qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
361 
362             /* Check that DQ3 is 1. */
363             uint64_t status0 = flash_read(c, byte_addr);
364             g_assert_cmphex(status0 & dq3, ==, dq3);
365 
366             /* DQ7 is 0 during an erase. */
367             g_assert_cmphex(status0 & dq7, ==, 0);
368             uint64_t status1 = flash_read(c, byte_addr);
369 
370             /* DQ6 toggles during an erase. */
371             g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
372 
373             /* Wait for erase to complete. */
374             wait_for_completion(c, byte_addr);
375 
376             /* Ensure DQ6 has stopped toggling. */
377             g_assert_cmphex(flash_read(c, byte_addr), ==,
378                             flash_read(c, byte_addr));
379 
380             /* Now the data should be valid. */
381             g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
382 
383             /* Program a bit pattern. */
384             program(c, byte_addr, 0x55);
385             g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
386             program(c, byte_addr, 0xA5);
387             g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
388             byte_addr += sector_len;
389         }
390     }
391 
392     /* Erase the chip. */
393     chip_erase(c);
394     /* Read toggle. */
395     uint64_t status0 = flash_read(c, 0);
396     /* DQ7 is 0 during an erase. */
397     g_assert_cmphex(status0 & dq7, ==, 0);
398     uint64_t status1 = flash_read(c, 0);
399     /* DQ6 toggles during an erase. */
400     g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
401     /* Wait for erase to complete. */
402     qtest_clock_step_next(c->qtest);
403     /* Ensure DQ6 has stopped toggling. */
404     g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
405     /* Now the data should be valid. */
406 
407     for (int region = 0; region < nb_erase_regions; ++region) {
408         for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
409             uint64_t byte_addr = i * c->sector_len[region];
410             g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
411         }
412     }
413 
414     /* Unlock bypass */
415     unlock(c);
416     flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
417     bypass_program(c, 0 * c->bank_width, 0x01);
418     bypass_program(c, 1 * c->bank_width, 0x23);
419     bypass_program(c, 2 * c->bank_width, 0x45);
420     /*
421      * Test that bypass programming, unlike normal programming can use any
422      * address for the PROGRAM_CMD.
423      */
424     flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
425     flash_write(c, 3 * c->bank_width, 0x67);
426     wait_for_completion(c, 3 * c->bank_width);
427     flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
428     bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
429     g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
430     g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
431     g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
432     g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
433     g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
434 
435     /* Test ignored high order bits of address. */
436     flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
437     flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
438     flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
439     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
440     reset(c);
441 
442     /*
443      * Program a word on each sector, erase one or two sectors per region, and
444      * verify that all of those, and only those, are erased.
445      */
446     byte_addr = 0;
447     for (int region = 0; region < nb_erase_regions; ++region) {
448         for (int i = 0; i < config->nb_blocs[region]; ++i) {
449             program(c, byte_addr, 0);
450             byte_addr += config->sector_len[region];
451         }
452     }
453     unlock(c);
454     flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
455     unlock(c);
456     byte_addr = 0;
457     const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD);
458     for (int region = 0; region < nb_erase_regions; ++region) {
459         flash_write(c, byte_addr, erase_cmd);
460         if (c->nb_blocs[region] > 1) {
461             flash_write(c, byte_addr + c->sector_len[region], erase_cmd);
462         }
463         byte_addr += c->sector_len[region] * c->nb_blocs[region];
464     }
465 
466     qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
467     wait_for_completion(c, 0);
468     byte_addr = 0;
469     for (int region = 0; region < nb_erase_regions; ++region) {
470         for (int i = 0; i < config->nb_blocs[region]; ++i) {
471             if (i < 2) {
472                 g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
473             } else {
474                 g_assert_cmphex(flash_read(c, byte_addr), ==, 0);
475             }
476             byte_addr += config->sector_len[region];
477         }
478     }
479 
480     /* Test erase suspend/resume during erase timeout. */
481     sector_erase(c, 0);
482     /*
483      * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being
484      * erased as well as in a sector not being erased.
485      */
486     byte_addr = c->sector_len[0];
487     status0 = flash_read(c, 0);
488     status1 = flash_read(c, 0);
489     g_assert_cmpint(status0 & dq3, ==, 0);
490     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
491     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
492     status0 = flash_read(c, byte_addr);
493     status1 = flash_read(c, byte_addr);
494     g_assert_cmpint(status0 & dq3, ==, 0);
495     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
496     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
497 
498     /*
499      * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
500      * an erase suspended sector but that neither toggle (we should be
501      * getting data) in a sector not being erased.
502      */
503     erase_suspend(c);
504     status0 = flash_read(c, 0);
505     status1 = flash_read(c, 0);
506     g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
507     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
508     g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
509 
510     /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
511     erase_resume(c);
512     status0 = flash_read(c, 0);
513     status1 = flash_read(c, 0);
514     g_assert_cmpint(status0 & dq3, ==, dq3);
515     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
516     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
517     status0 = flash_read(c, byte_addr);
518     status1 = flash_read(c, byte_addr);
519     g_assert_cmpint(status0 & dq3, ==, dq3);
520     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
521     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
522     wait_for_completion(c, 0);
523 
524     /* Repeat this process but this time suspend after the timeout. */
525     sector_erase(c, 0);
526     qtest_clock_step_next(c->qtest);
527     /*
528      * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being
529      * erased as well as in a sector not being erased.
530      */
531     byte_addr = c->sector_len[0];
532     status0 = flash_read(c, 0);
533     status1 = flash_read(c, 0);
534     g_assert_cmpint(status0 & dq3, ==, dq3);
535     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
536     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
537     status0 = flash_read(c, byte_addr);
538     status1 = flash_read(c, byte_addr);
539     g_assert_cmpint(status0 & dq3, ==, dq3);
540     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
541     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
542 
543     /*
544      * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
545      * an erase suspended sector but that neither toggle (we should be
546      * getting data) in a sector not being erased.
547      */
548     erase_suspend(c);
549     status0 = flash_read(c, 0);
550     status1 = flash_read(c, 0);
551     g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
552     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
553     g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
554 
555     /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
556     erase_resume(c);
557     status0 = flash_read(c, 0);
558     status1 = flash_read(c, 0);
559     g_assert_cmpint(status0 & dq3, ==, dq3);
560     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
561     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
562     status0 = flash_read(c, byte_addr);
563     status1 = flash_read(c, byte_addr);
564     g_assert_cmpint(status0 & dq3, ==, dq3);
565     g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
566     g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
567     wait_for_completion(c, 0);
568 
569     qtest_quit(qtest);
570 }
571 
572 /*
573  * Test that
574  * 1. enter autoselect mode;
575  * 2. enter CFI mode; and then
576  * 3. exit CFI mode
577  * leaves the flash device in autoselect mode.
578  */
579 static void test_cfi_in_autoselect(const void *opaque)
580 {
581     const FlashConfig *config = opaque;
582     QTestState *qtest;
583     qtest = qtest_initf("-M musicpal"
584                         " -drive if=pflash,file=%s,format=raw,copy-on-read",
585                         image_path);
586     FlashConfig explicit_config = expand_config_defaults(config);
587     explicit_config.qtest = qtest;
588     const FlashConfig *c = &explicit_config;
589 
590     /* 1. Enter autoselect. */
591     unlock(c);
592     flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
593     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
594 
595     /* 2. Enter CFI. */
596     flash_cmd(c, CFI_ADDR, CFI_CMD);
597     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
598     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
599     g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
600 
601     /* 3. Exit CFI. */
602     reset(c);
603     g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
604 
605     qtest_quit(qtest);
606 }
607 
608 static void cleanup(void *opaque)
609 {
610     unlink(image_path);
611 }
612 
613 /*
614  * XXX: Tests are limited to bank_width = 2 for now because that's what
615  * hw/arm/musicpal.c has.
616  */
617 static const FlashConfig configuration[] = {
618     /* One x16 device. */
619     {
620         .bank_width = 2,
621     },
622     /* Nonuniform sectors (top boot). */
623     {
624         .bank_width = 2,
625         .nb_blocs = { 127, 1, 2, 1 },
626         .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
627     },
628     /* Nonuniform sectors (bottom boot). */
629     {
630         .bank_width = 2,
631         .nb_blocs = { 1, 2, 1, 127 },
632         .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
633     },
634 };
635 
636 int main(int argc, char **argv)
637 {
638     int fd = mkstemp(image_path);
639     if (fd == -1) {
640         g_printerr("Failed to create temporary file %s: %s\n", image_path,
641                    strerror(errno));
642         exit(EXIT_FAILURE);
643     }
644     if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
645         int error_code = errno;
646         close(fd);
647         unlink(image_path);
648         g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
649                    UNIFORM_FLASH_SIZE, strerror(error_code));
650         exit(EXIT_FAILURE);
651     }
652     close(fd);
653 
654     qtest_add_abrt_handler(cleanup, NULL);
655     g_test_init(&argc, &argv, NULL);
656 
657     size_t nb_configurations = sizeof configuration / sizeof configuration[0];
658     for (size_t i = 0; i < nb_configurations; ++i) {
659         const FlashConfig *config = &configuration[i];
660         char *path = g_strdup_printf("pflash-cfi02"
661                                      "/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
662                                      "/%d",
663                                      config->nb_blocs[0],
664                                      config->sector_len[0],
665                                      config->nb_blocs[1],
666                                      config->sector_len[1],
667                                      config->nb_blocs[2],
668                                      config->sector_len[2],
669                                      config->nb_blocs[3],
670                                      config->sector_len[3],
671                                      config->bank_width);
672         qtest_add_data_func(path, config, test_geometry);
673         g_free(path);
674     }
675 
676     qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0],
677                         test_cfi_in_autoselect);
678     int result = g_test_run();
679     cleanup(NULL);
680     return result;
681 }
682