xref: /openbmc/qemu/tests/qtest/npcm7xx_rng-test.c (revision c63ca4ff)
1 /*
2  * QTest testcase for the Nuvoton NPCM7xx Random Number Generator
3  *
4  * Copyright 2020 Google LLC
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14  * for more details.
15  */
16 
17 #include "qemu/osdep.h"
18 
19 #include <math.h>
20 
21 #include "libqtest-single.h"
22 #include "qemu/bitops.h"
23 #include "qemu-common.h"
24 
25 #define RNG_BASE_ADDR   0xf000b000
26 
27 /* Control and Status Register */
28 #define RNGCS   0x00
29 # define DVALID     BIT(1)  /* Data Valid */
30 # define RNGE       BIT(0)  /* RNG Enable */
31 /* Data Register */
32 #define RNGD    0x04
33 /* Mode Register */
34 #define RNGMODE 0x08
35 # define ROSEL_NORMAL   (2) /* RNG only works in this mode */
36 
37 /* Number of bits to collect for randomness tests. */
38 #define TEST_INPUT_BITS  (128)
39 
40 static void dump_buf_if_failed(const uint8_t *buf, size_t size)
41 {
42     if (g_test_failed()) {
43         qemu_hexdump(stderr, "", buf, size);
44     }
45 }
46 
47 static void rng_writeb(unsigned int offset, uint8_t value)
48 {
49     writeb(RNG_BASE_ADDR + offset, value);
50 }
51 
52 static uint8_t rng_readb(unsigned int offset)
53 {
54     return readb(RNG_BASE_ADDR + offset);
55 }
56 
57 /* Disable RNG and set normal ring oscillator mode. */
58 static void rng_reset(void)
59 {
60     rng_writeb(RNGCS, 0);
61     rng_writeb(RNGMODE, ROSEL_NORMAL);
62 }
63 
64 /* Reset RNG and then enable it. */
65 static void rng_reset_enable(void)
66 {
67     rng_reset();
68     rng_writeb(RNGCS, RNGE);
69 }
70 
71 /* Wait until Data Valid bit is set. */
72 static bool rng_wait_ready(void)
73 {
74     /* qemu_guest_getrandom may fail. Assume it won't fail 10 times in a row. */
75     int retries = 10;
76 
77     while (retries-- > 0) {
78         if (rng_readb(RNGCS) & DVALID) {
79             return true;
80         }
81     }
82 
83     return false;
84 }
85 
86 /*
87  * Perform a frequency (monobit) test, as defined by NIST SP 800-22, on the
88  * sequence in buf and return the P-value. This represents the probability of a
89  * truly random sequence having the same proportion of zeros and ones as the
90  * sequence in buf.
91  *
92  * An RNG which always returns 0x00 or 0xff, or has some bits stuck at 0 or 1,
93  * will fail this test. However, an RNG which always returns 0x55, 0xf0 or some
94  * other value with an equal number of zeroes and ones will pass.
95  */
96 static double calc_monobit_p(const uint8_t *buf, unsigned int len)
97 {
98     unsigned int i;
99     double s_obs;
100     int sn = 0;
101 
102     for (i = 0; i < len; i++) {
103         /*
104          * Each 1 counts as 1, each 0 counts as -1.
105          * s = cp - (8 - cp) = 2 * cp - 8
106          */
107         sn += 2 * ctpop8(buf[i]) - 8;
108     }
109 
110     s_obs = abs(sn) / sqrt(len * BITS_PER_BYTE);
111 
112     return erfc(s_obs / sqrt(2));
113 }
114 
115 /*
116  * Perform a runs test, as defined by NIST SP 800-22, and return the P-value.
117  * This represents the probability of a truly random sequence having the same
118  * number of runs (i.e. uninterrupted sequences of identical bits) as the
119  * sequence in buf.
120  */
121 static double calc_runs_p(const unsigned long *buf, unsigned int nr_bits)
122 {
123     unsigned int j;
124     unsigned int k;
125     int nr_ones = 0;
126     int vn_obs = 0;
127     double pi;
128 
129     g_assert(nr_bits % BITS_PER_LONG == 0);
130 
131     for (j = 0; j < nr_bits / BITS_PER_LONG; j++) {
132         nr_ones += __builtin_popcountl(buf[j]);
133     }
134     pi = (double)nr_ones / nr_bits;
135 
136     for (k = 0; k < nr_bits - 1; k++) {
137         vn_obs += (test_bit(k, buf) ^ test_bit(k + 1, buf));
138     }
139     vn_obs += 1;
140 
141     return erfc(fabs(vn_obs - 2 * nr_bits * pi * (1.0 - pi))
142                 / (2 * sqrt(2 * nr_bits) * pi * (1.0 - pi)));
143 }
144 
145 /*
146  * Verifies that DVALID is clear, and RNGD reads zero, when RNGE is cleared,
147  * and DVALID eventually becomes set when RNGE is set.
148  */
149 static void test_enable_disable(void)
150 {
151     /* Disable: DVALID should not be set, and RNGD should read zero */
152     rng_reset();
153     g_assert_cmphex(rng_readb(RNGCS), ==, 0);
154     g_assert_cmphex(rng_readb(RNGD), ==, 0);
155 
156     /* Enable: DVALID should be set, but we can't make assumptions about RNGD */
157     rng_writeb(RNGCS, RNGE);
158     g_assert_true(rng_wait_ready());
159     g_assert_cmphex(rng_readb(RNGCS), ==, DVALID | RNGE);
160 
161     /* Disable: DVALID should not be set, and RNGD should read zero */
162     rng_writeb(RNGCS, 0);
163     g_assert_cmphex(rng_readb(RNGCS), ==, 0);
164     g_assert_cmphex(rng_readb(RNGD), ==, 0);
165 }
166 
167 /*
168  * Verifies that the RNG only produces data when RNGMODE is set to 'normal'
169  * ring oscillator mode.
170  */
171 static void test_rosel(void)
172 {
173     rng_reset_enable();
174     g_assert_true(rng_wait_ready());
175     rng_writeb(RNGMODE, 0);
176     g_assert_false(rng_wait_ready());
177     rng_writeb(RNGMODE, ROSEL_NORMAL);
178     g_assert_true(rng_wait_ready());
179     rng_writeb(RNGMODE, 0);
180     g_assert_false(rng_wait_ready());
181 }
182 
183 /*
184  * Verifies that a continuous sequence of bits collected after enabling the RNG
185  * satisfies a monobit test.
186  */
187 static void test_continuous_monobit(void)
188 {
189     uint8_t buf[TEST_INPUT_BITS / BITS_PER_BYTE];
190     unsigned int i;
191 
192     rng_reset_enable();
193     for (i = 0; i < sizeof(buf); i++) {
194         g_assert_true(rng_wait_ready());
195         buf[i] = rng_readb(RNGD);
196     }
197 
198     g_assert_cmpfloat(calc_monobit_p(buf, sizeof(buf)), >, 0.01);
199     dump_buf_if_failed(buf, sizeof(buf));
200 }
201 
202 /*
203  * Verifies that a continuous sequence of bits collected after enabling the RNG
204  * satisfies a runs test.
205  */
206 static void test_continuous_runs(void)
207 {
208     union {
209         unsigned long l[TEST_INPUT_BITS / BITS_PER_LONG];
210         uint8_t c[TEST_INPUT_BITS / BITS_PER_BYTE];
211     } buf;
212     unsigned int i;
213 
214     rng_reset_enable();
215     for (i = 0; i < sizeof(buf); i++) {
216         g_assert_true(rng_wait_ready());
217         buf.c[i] = rng_readb(RNGD);
218     }
219 
220     g_assert_cmpfloat(calc_runs_p(buf.l, sizeof(buf) * BITS_PER_BYTE), >, 0.01);
221     dump_buf_if_failed(buf.c, sizeof(buf));
222 }
223 
224 /*
225  * Verifies that the first data byte collected after enabling the RNG satisfies
226  * a monobit test.
227  */
228 static void test_first_byte_monobit(void)
229 {
230     /* Enable, collect one byte, disable. Repeat until we have 100 bits. */
231     uint8_t buf[TEST_INPUT_BITS / BITS_PER_BYTE];
232     unsigned int i;
233 
234     rng_reset();
235     for (i = 0; i < sizeof(buf); i++) {
236         rng_writeb(RNGCS, RNGE);
237         g_assert_true(rng_wait_ready());
238         buf[i] = rng_readb(RNGD);
239         rng_writeb(RNGCS, 0);
240     }
241 
242     g_assert_cmpfloat(calc_monobit_p(buf, sizeof(buf)), >, 0.01);
243     dump_buf_if_failed(buf, sizeof(buf));
244 }
245 
246 /*
247  * Verifies that the first data byte collected after enabling the RNG satisfies
248  * a runs test.
249  */
250 static void test_first_byte_runs(void)
251 {
252     /* Enable, collect one byte, disable. Repeat until we have 100 bits. */
253     union {
254         unsigned long l[TEST_INPUT_BITS / BITS_PER_LONG];
255         uint8_t c[TEST_INPUT_BITS / BITS_PER_BYTE];
256     } buf;
257     unsigned int i;
258 
259     rng_reset();
260     for (i = 0; i < sizeof(buf); i++) {
261         rng_writeb(RNGCS, RNGE);
262         g_assert_true(rng_wait_ready());
263         buf.c[i] = rng_readb(RNGD);
264         rng_writeb(RNGCS, 0);
265     }
266 
267     g_assert_cmpfloat(calc_runs_p(buf.l, sizeof(buf) * BITS_PER_BYTE), >, 0.01);
268     dump_buf_if_failed(buf.c, sizeof(buf));
269 }
270 
271 int main(int argc, char **argv)
272 {
273     int ret;
274 
275     g_test_init(&argc, &argv, NULL);
276     g_test_set_nonfatal_assertions();
277 
278     qtest_add_func("npcm7xx_rng/enable_disable", test_enable_disable);
279     qtest_add_func("npcm7xx_rng/rosel", test_rosel);
280     /*
281      * These tests fail intermittently; only run them on explicit
282      * request until we figure out why.
283      */
284     if (getenv("QEMU_TEST_FLAKY_RNG_TESTS")) {
285         qtest_add_func("npcm7xx_rng/continuous/monobit", test_continuous_monobit);
286         qtest_add_func("npcm7xx_rng/continuous/runs", test_continuous_runs);
287         qtest_add_func("npcm7xx_rng/first_byte/monobit", test_first_byte_monobit);
288         qtest_add_func("npcm7xx_rng/first_byte/runs", test_first_byte_runs);
289     }
290 
291     qtest_start("-machine npcm750-evb");
292     ret = g_test_run();
293     qtest_end();
294 
295     return ret;
296 }
297