xref: /openbmc/qemu/tests/qtest/npcm7xx_pwm-test.c (revision 30b6852c)
1 /*
2  * QTests for Nuvoton NPCM7xx PWM Modules.
3  *
4  * Copyright 2020 Google LLC
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14  * for more details.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qemu/bitops.h"
19 #include "libqos/libqtest.h"
20 #include "qapi/qmp/qdict.h"
21 #include "qapi/qmp/qnum.h"
22 
23 #define REF_HZ          25000000
24 
25 /* Register field definitions. */
26 #define CH_EN           BIT(0)
27 #define CH_INV          BIT(2)
28 #define CH_MOD          BIT(3)
29 
30 /* Registers shared between all PWMs in a module */
31 #define PPR             0x00
32 #define CSR             0x04
33 #define PCR             0x08
34 #define PIER            0x3c
35 #define PIIR            0x40
36 
37 /* CLK module related */
38 #define CLK_BA          0xf0801000
39 #define CLKSEL          0x04
40 #define CLKDIV1         0x08
41 #define CLKDIV2         0x2c
42 #define PLLCON0         0x0c
43 #define PLLCON1         0x10
44 #define PLL_INDV(rv)    extract32((rv), 0, 6)
45 #define PLL_FBDV(rv)    extract32((rv), 16, 12)
46 #define PLL_OTDV1(rv)   extract32((rv), 8, 3)
47 #define PLL_OTDV2(rv)   extract32((rv), 13, 3)
48 #define APB4CKDIV(rv)   extract32((rv), 30, 2)
49 #define APB3CKDIV(rv)   extract32((rv), 28, 2)
50 #define CLK2CKDIV(rv)   extract32((rv), 0, 1)
51 #define CLK4CKDIV(rv)   extract32((rv), 26, 2)
52 #define CPUCKSEL(rv)    extract32((rv), 0, 2)
53 
54 #define MAX_DUTY        1000000
55 
56 /* MFT (PWM fan) related */
57 #define MFT_BA(n)       (0xf0180000 + ((n) * 0x1000))
58 #define MFT_IRQ(n)      (96 + (n))
59 #define MFT_CNT1        0x00
60 #define MFT_CRA         0x02
61 #define MFT_CRB         0x04
62 #define MFT_CNT2        0x06
63 #define MFT_PRSC        0x08
64 #define MFT_CKC         0x0a
65 #define MFT_MCTRL       0x0c
66 #define MFT_ICTRL       0x0e
67 #define MFT_ICLR        0x10
68 #define MFT_IEN         0x12
69 #define MFT_CPA         0x14
70 #define MFT_CPB         0x16
71 #define MFT_CPCFG       0x18
72 #define MFT_INASEL      0x1a
73 #define MFT_INBSEL      0x1c
74 
75 #define MFT_MCTRL_ALL   0x64
76 #define MFT_ICLR_ALL    0x3f
77 #define MFT_IEN_ALL     0x3f
78 #define MFT_CPCFG_EQ_MODE 0x44
79 
80 #define MFT_CKC_C2CSEL  BIT(3)
81 #define MFT_CKC_C1CSEL  BIT(0)
82 
83 #define MFT_ICTRL_TFPND BIT(5)
84 #define MFT_ICTRL_TEPND BIT(4)
85 #define MFT_ICTRL_TDPND BIT(3)
86 #define MFT_ICTRL_TCPND BIT(2)
87 #define MFT_ICTRL_TBPND BIT(1)
88 #define MFT_ICTRL_TAPND BIT(0)
89 
90 #define MFT_MAX_CNT     0xffff
91 #define MFT_TIMEOUT     0x5000
92 
93 #define DEFAULT_RPM     19800
94 #define DEFAULT_PRSC    255
95 #define MFT_PULSE_PER_REVOLUTION 2
96 
97 #define MAX_ERROR       1
98 
99 typedef struct PWMModule {
100     int irq;
101     uint64_t base_addr;
102 } PWMModule;
103 
104 typedef struct PWM {
105     uint32_t cnr_offset;
106     uint32_t cmr_offset;
107     uint32_t pdr_offset;
108     uint32_t pwdr_offset;
109 } PWM;
110 
111 typedef struct TestData {
112     const PWMModule *module;
113     const PWM *pwm;
114 } TestData;
115 
116 static const PWMModule pwm_module_list[] = {
117     {
118         .irq        = 93,
119         .base_addr  = 0xf0103000
120     },
121     {
122         .irq        = 94,
123         .base_addr  = 0xf0104000
124     }
125 };
126 
127 static const PWM pwm_list[] = {
128     {
129         .cnr_offset     = 0x0c,
130         .cmr_offset     = 0x10,
131         .pdr_offset     = 0x14,
132         .pwdr_offset    = 0x44,
133     },
134     {
135         .cnr_offset     = 0x18,
136         .cmr_offset     = 0x1c,
137         .pdr_offset     = 0x20,
138         .pwdr_offset    = 0x48,
139     },
140     {
141         .cnr_offset     = 0x24,
142         .cmr_offset     = 0x28,
143         .pdr_offset     = 0x2c,
144         .pwdr_offset    = 0x4c,
145     },
146     {
147         .cnr_offset     = 0x30,
148         .cmr_offset     = 0x34,
149         .pdr_offset     = 0x38,
150         .pwdr_offset    = 0x50,
151     },
152 };
153 
154 static const int ppr_base[] = { 0, 0, 8, 8 };
155 static const int csr_base[] = { 0, 4, 8, 12 };
156 static const int pcr_base[] = { 0, 8, 12, 16 };
157 
158 static const uint32_t ppr_list[] = {
159     0,
160     1,
161     10,
162     100,
163     255, /* Max possible value. */
164 };
165 
166 static const uint32_t csr_list[] = {
167     0,
168     1,
169     2,
170     3,
171     4, /* Max possible value. */
172 };
173 
174 static const uint32_t cnr_list[] = {
175     0,
176     1,
177     50,
178     100,
179     150,
180     200,
181     1000,
182     10000,
183     65535, /* Max possible value. */
184 };
185 
186 static const uint32_t cmr_list[] = {
187     0,
188     1,
189     10,
190     50,
191     100,
192     150,
193     200,
194     1000,
195     10000,
196     65535, /* Max possible value. */
197 };
198 
199 /* Returns the index of the PWM module. */
200 static int pwm_module_index(const PWMModule *module)
201 {
202     ptrdiff_t diff = module - pwm_module_list;
203 
204     g_assert(diff >= 0 && diff < ARRAY_SIZE(pwm_module_list));
205 
206     return diff;
207 }
208 
209 /* Returns the index of the PWM entry. */
210 static int pwm_index(const PWM *pwm)
211 {
212     ptrdiff_t diff = pwm - pwm_list;
213 
214     g_assert(diff >= 0 && diff < ARRAY_SIZE(pwm_list));
215 
216     return diff;
217 }
218 
219 static uint64_t pwm_qom_get(QTestState *qts, const char *path, const char *name)
220 {
221     QDict *response;
222     uint64_t val;
223 
224     g_test_message("Getting properties %s from %s", name, path);
225     response = qtest_qmp(qts, "{ 'execute': 'qom-get',"
226             " 'arguments': { 'path': %s, 'property': %s}}",
227             path, name);
228     /* The qom set message returns successfully. */
229     g_assert_true(qdict_haskey(response, "return"));
230     val = qnum_get_uint(qobject_to(QNum, qdict_get(response, "return")));
231     qobject_unref(response);
232     return val;
233 }
234 
235 static uint64_t pwm_get_freq(QTestState *qts, int module_index, int pwm_index)
236 {
237     char path[100];
238     char name[100];
239 
240     sprintf(path, "/machine/soc/pwm[%d]", module_index);
241     sprintf(name, "freq[%d]", pwm_index);
242 
243     return pwm_qom_get(qts, path, name);
244 }
245 
246 static uint64_t pwm_get_duty(QTestState *qts, int module_index, int pwm_index)
247 {
248     char path[100];
249     char name[100];
250 
251     sprintf(path, "/machine/soc/pwm[%d]", module_index);
252     sprintf(name, "duty[%d]", pwm_index);
253 
254     return pwm_qom_get(qts, path, name);
255 }
256 
257 static void mft_qom_set(QTestState *qts, int index, const char *name,
258                         uint32_t value)
259 {
260     QDict *response;
261     char *path = g_strdup_printf("/machine/soc/mft[%d]", index);
262 
263     g_test_message("Setting properties %s of mft[%d] with value %u",
264                    name, index, value);
265     response = qtest_qmp(qts, "{ 'execute': 'qom-set',"
266             " 'arguments': { 'path': %s, "
267             " 'property': %s, 'value': %u}}",
268             path, name, value);
269     /* The qom set message returns successfully. */
270     g_assert_true(qdict_haskey(response, "return"));
271 }
272 
273 static uint32_t get_pll(uint32_t con)
274 {
275     return REF_HZ * PLL_FBDV(con) / (PLL_INDV(con) * PLL_OTDV1(con)
276             * PLL_OTDV2(con));
277 }
278 
279 static uint64_t read_pclk(QTestState *qts, bool mft)
280 {
281     uint64_t freq = REF_HZ;
282     uint32_t clksel = qtest_readl(qts, CLK_BA + CLKSEL);
283     uint32_t pllcon;
284     uint32_t clkdiv1 = qtest_readl(qts, CLK_BA + CLKDIV1);
285     uint32_t clkdiv2 = qtest_readl(qts, CLK_BA + CLKDIV2);
286     uint32_t apbdiv = mft ? APB4CKDIV(clkdiv2) : APB3CKDIV(clkdiv2);
287 
288     switch (CPUCKSEL(clksel)) {
289     case 0:
290         pllcon = qtest_readl(qts, CLK_BA + PLLCON0);
291         freq = get_pll(pllcon);
292         break;
293     case 1:
294         pllcon = qtest_readl(qts, CLK_BA + PLLCON1);
295         freq = get_pll(pllcon);
296         break;
297     case 2:
298         break;
299     case 3:
300         break;
301     default:
302         g_assert_not_reached();
303     }
304 
305     freq >>= (CLK2CKDIV(clkdiv1) + CLK4CKDIV(clkdiv1) + apbdiv);
306 
307     return freq;
308 }
309 
310 static uint32_t pwm_selector(uint32_t csr)
311 {
312     switch (csr) {
313     case 0:
314         return 2;
315     case 1:
316         return 4;
317     case 2:
318         return 8;
319     case 3:
320         return 16;
321     case 4:
322         return 1;
323     default:
324         g_assert_not_reached();
325     }
326 }
327 
328 static uint64_t pwm_compute_freq(QTestState *qts, uint32_t ppr, uint32_t csr,
329         uint32_t cnr)
330 {
331     return read_pclk(qts, false) / ((ppr + 1) * pwm_selector(csr) * (cnr + 1));
332 }
333 
334 static uint64_t pwm_compute_duty(uint32_t cnr, uint32_t cmr, bool inverted)
335 {
336     uint32_t duty;
337 
338     if (cnr == 0) {
339         /* PWM is stopped. */
340         duty = 0;
341     } else if (cmr >= cnr) {
342         duty = MAX_DUTY;
343     } else {
344         duty = (uint64_t)MAX_DUTY * (cmr + 1) / (cnr + 1);
345     }
346 
347     if (inverted) {
348         duty = MAX_DUTY - duty;
349     }
350 
351     return duty;
352 }
353 
354 static uint32_t pwm_read(QTestState *qts, const TestData *td, unsigned offset)
355 {
356     return qtest_readl(qts, td->module->base_addr + offset);
357 }
358 
359 static void pwm_write(QTestState *qts, const TestData *td, unsigned offset,
360         uint32_t value)
361 {
362     qtest_writel(qts, td->module->base_addr + offset, value);
363 }
364 
365 static uint8_t mft_readb(QTestState *qts, int index, unsigned offset)
366 {
367     return qtest_readb(qts, MFT_BA(index) + offset);
368 }
369 
370 static uint16_t mft_readw(QTestState *qts, int index, unsigned offset)
371 {
372     return qtest_readw(qts, MFT_BA(index) + offset);
373 }
374 
375 static void mft_writeb(QTestState *qts, int index, unsigned offset,
376                         uint8_t value)
377 {
378     qtest_writeb(qts, MFT_BA(index) + offset, value);
379 }
380 
381 static void mft_writew(QTestState *qts, int index, unsigned offset,
382                         uint16_t value)
383 {
384     return qtest_writew(qts, MFT_BA(index) + offset, value);
385 }
386 
387 static uint32_t pwm_read_ppr(QTestState *qts, const TestData *td)
388 {
389     return extract32(pwm_read(qts, td, PPR), ppr_base[pwm_index(td->pwm)], 8);
390 }
391 
392 static void pwm_write_ppr(QTestState *qts, const TestData *td, uint32_t value)
393 {
394     pwm_write(qts, td, PPR, value << ppr_base[pwm_index(td->pwm)]);
395 }
396 
397 static uint32_t pwm_read_csr(QTestState *qts, const TestData *td)
398 {
399     return extract32(pwm_read(qts, td, CSR), csr_base[pwm_index(td->pwm)], 3);
400 }
401 
402 static void pwm_write_csr(QTestState *qts, const TestData *td, uint32_t value)
403 {
404     pwm_write(qts, td, CSR, value << csr_base[pwm_index(td->pwm)]);
405 }
406 
407 static uint32_t pwm_read_pcr(QTestState *qts, const TestData *td)
408 {
409     return extract32(pwm_read(qts, td, PCR), pcr_base[pwm_index(td->pwm)], 4);
410 }
411 
412 static void pwm_write_pcr(QTestState *qts, const TestData *td, uint32_t value)
413 {
414     pwm_write(qts, td, PCR, value << pcr_base[pwm_index(td->pwm)]);
415 }
416 
417 static uint32_t pwm_read_cnr(QTestState *qts, const TestData *td)
418 {
419     return pwm_read(qts, td, td->pwm->cnr_offset);
420 }
421 
422 static void pwm_write_cnr(QTestState *qts, const TestData *td, uint32_t value)
423 {
424     pwm_write(qts, td, td->pwm->cnr_offset, value);
425 }
426 
427 static uint32_t pwm_read_cmr(QTestState *qts, const TestData *td)
428 {
429     return pwm_read(qts, td, td->pwm->cmr_offset);
430 }
431 
432 static void pwm_write_cmr(QTestState *qts, const TestData *td, uint32_t value)
433 {
434     pwm_write(qts, td, td->pwm->cmr_offset, value);
435 }
436 
437 static int mft_compute_index(const TestData *td)
438 {
439     int index = pwm_module_index(td->module) * ARRAY_SIZE(pwm_list) +
440                 pwm_index(td->pwm);
441 
442     g_assert_cmpint(index, <,
443                     ARRAY_SIZE(pwm_module_list) * ARRAY_SIZE(pwm_list));
444 
445     return index;
446 }
447 
448 static void mft_reset_counters(QTestState *qts, int index)
449 {
450     mft_writew(qts, index, MFT_CNT1, MFT_MAX_CNT);
451     mft_writew(qts, index, MFT_CNT2, MFT_MAX_CNT);
452     mft_writew(qts, index, MFT_CRA, MFT_MAX_CNT);
453     mft_writew(qts, index, MFT_CRB, MFT_MAX_CNT);
454     mft_writew(qts, index, MFT_CPA, MFT_MAX_CNT - MFT_TIMEOUT);
455     mft_writew(qts, index, MFT_CPB, MFT_MAX_CNT - MFT_TIMEOUT);
456 }
457 
458 static void mft_init(QTestState *qts, const TestData *td)
459 {
460     int index = mft_compute_index(td);
461 
462     /* Enable everything */
463     mft_writeb(qts, index, MFT_CKC, 0);
464     mft_writeb(qts, index, MFT_ICLR, MFT_ICLR_ALL);
465     mft_writeb(qts, index, MFT_MCTRL, MFT_MCTRL_ALL);
466     mft_writeb(qts, index, MFT_IEN, MFT_IEN_ALL);
467     mft_writeb(qts, index, MFT_INASEL, 0);
468     mft_writeb(qts, index, MFT_INBSEL, 0);
469 
470     /* Set cpcfg to use EQ mode, same as kernel driver */
471     mft_writeb(qts, index, MFT_CPCFG, MFT_CPCFG_EQ_MODE);
472 
473     /* Write default counters, timeout and prescaler */
474     mft_reset_counters(qts, index);
475     mft_writeb(qts, index, MFT_PRSC, DEFAULT_PRSC);
476 
477     /* Write default max rpm via QMP */
478     mft_qom_set(qts, index, "max_rpm[0]", DEFAULT_RPM);
479     mft_qom_set(qts, index, "max_rpm[1]", DEFAULT_RPM);
480 }
481 
482 static int32_t mft_compute_cnt(uint32_t rpm, uint64_t clk)
483 {
484     uint64_t cnt;
485 
486     if (rpm == 0) {
487         return -1;
488     }
489 
490     cnt = clk * 60 / ((DEFAULT_PRSC + 1) * rpm * MFT_PULSE_PER_REVOLUTION);
491     if (cnt >= MFT_TIMEOUT) {
492         return -1;
493     }
494     return MFT_MAX_CNT - cnt;
495 }
496 
497 static void mft_verify_rpm(QTestState *qts, const TestData *td, uint64_t duty)
498 {
499     int index = mft_compute_index(td);
500     uint16_t cnt, cr;
501     uint32_t rpm = DEFAULT_RPM * duty / MAX_DUTY;
502     uint64_t clk = read_pclk(qts, true);
503     int32_t expected_cnt = mft_compute_cnt(rpm, clk);
504 
505     qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
506     g_test_message(
507         "verifying rpm for mft[%d]: clk: %" PRIu64 ", duty: %" PRIu64 ", rpm: %u, cnt: %d",
508         index, clk, duty, rpm, expected_cnt);
509 
510     /* Verify rpm for fan A */
511     /* Stop capture */
512     mft_writeb(qts, index, MFT_CKC, 0);
513     mft_writeb(qts, index, MFT_ICLR, MFT_ICLR_ALL);
514     mft_reset_counters(qts, index);
515     g_assert_cmphex(mft_readw(qts, index, MFT_CNT1), ==, MFT_MAX_CNT);
516     g_assert_cmphex(mft_readw(qts, index, MFT_CRA), ==, MFT_MAX_CNT);
517     g_assert_cmphex(mft_readw(qts, index, MFT_CPA), ==,
518                     MFT_MAX_CNT - MFT_TIMEOUT);
519     /* Start capture */
520     mft_writeb(qts, index, MFT_CKC, MFT_CKC_C1CSEL);
521     g_assert_true(qtest_get_irq(qts, MFT_IRQ(index)));
522     if (expected_cnt == -1) {
523         g_assert_cmphex(mft_readb(qts, index, MFT_ICTRL), ==, MFT_ICTRL_TEPND);
524     } else {
525         g_assert_cmphex(mft_readb(qts, index, MFT_ICTRL), ==, MFT_ICTRL_TAPND);
526         cnt = mft_readw(qts, index, MFT_CNT1);
527         /*
528          * Due to error in clock measurement and rounding, we might have a small
529          * error in measuring RPM.
530          */
531         g_assert_cmphex(cnt + MAX_ERROR, >=, expected_cnt);
532         g_assert_cmphex(cnt, <=, expected_cnt + MAX_ERROR);
533         cr = mft_readw(qts, index, MFT_CRA);
534         g_assert_cmphex(cnt, ==, cr);
535     }
536 
537     /* Verify rpm for fan B */
538 
539     qtest_irq_intercept_out(qts, "/machine/soc/a9mpcore/gic");
540 }
541 
542 /* Check pwm registers can be reset to default value */
543 static void test_init(gconstpointer test_data)
544 {
545     const TestData *td = test_data;
546     QTestState *qts = qtest_init("-machine npcm750-evb");
547     int module = pwm_module_index(td->module);
548     int pwm = pwm_index(td->pwm);
549 
550     g_assert_cmpuint(pwm_get_freq(qts, module, pwm), ==, 0);
551     g_assert_cmpuint(pwm_get_duty(qts, module, pwm), ==, 0);
552 
553     qtest_quit(qts);
554 }
555 
556 /* One-shot mode should not change frequency and duty cycle. */
557 static void test_oneshot(gconstpointer test_data)
558 {
559     const TestData *td = test_data;
560     QTestState *qts = qtest_init("-machine npcm750-evb");
561     int module = pwm_module_index(td->module);
562     int pwm = pwm_index(td->pwm);
563     uint32_t ppr, csr, pcr;
564     int i, j;
565 
566     pcr = CH_EN;
567     for (i = 0; i < ARRAY_SIZE(ppr_list); ++i) {
568         ppr = ppr_list[i];
569         pwm_write_ppr(qts, td, ppr);
570 
571         for (j = 0; j < ARRAY_SIZE(csr_list); ++j) {
572             csr = csr_list[j];
573             pwm_write_csr(qts, td, csr);
574             pwm_write_pcr(qts, td, pcr);
575 
576             g_assert_cmpuint(pwm_read_ppr(qts, td), ==, ppr);
577             g_assert_cmpuint(pwm_read_csr(qts, td), ==, csr);
578             g_assert_cmpuint(pwm_read_pcr(qts, td), ==, pcr);
579             g_assert_cmpuint(pwm_get_freq(qts, module, pwm), ==, 0);
580             g_assert_cmpuint(pwm_get_duty(qts, module, pwm), ==, 0);
581         }
582     }
583 
584     qtest_quit(qts);
585 }
586 
587 /* In toggle mode, the PWM generates correct outputs. */
588 static void test_toggle(gconstpointer test_data)
589 {
590     const TestData *td = test_data;
591     QTestState *qts = qtest_init("-machine npcm750-evb");
592     int module = pwm_module_index(td->module);
593     int pwm = pwm_index(td->pwm);
594     uint32_t ppr, csr, pcr, cnr, cmr;
595     int i, j, k, l;
596     uint64_t expected_freq, expected_duty;
597 
598     mft_init(qts, td);
599 
600     pcr = CH_EN | CH_MOD;
601     for (i = 0; i < ARRAY_SIZE(ppr_list); ++i) {
602         ppr = ppr_list[i];
603         pwm_write_ppr(qts, td, ppr);
604 
605         for (j = 0; j < ARRAY_SIZE(csr_list); ++j) {
606             csr = csr_list[j];
607             pwm_write_csr(qts, td, csr);
608 
609             for (k = 0; k < ARRAY_SIZE(cnr_list); ++k) {
610                 cnr = cnr_list[k];
611                 pwm_write_cnr(qts, td, cnr);
612 
613                 for (l = 0; l < ARRAY_SIZE(cmr_list); ++l) {
614                     cmr = cmr_list[l];
615                     pwm_write_cmr(qts, td, cmr);
616                     expected_freq = pwm_compute_freq(qts, ppr, csr, cnr);
617                     expected_duty = pwm_compute_duty(cnr, cmr, false);
618 
619                     pwm_write_pcr(qts, td, pcr);
620                     g_assert_cmpuint(pwm_read_ppr(qts, td), ==, ppr);
621                     g_assert_cmpuint(pwm_read_csr(qts, td), ==, csr);
622                     g_assert_cmpuint(pwm_read_pcr(qts, td), ==, pcr);
623                     g_assert_cmpuint(pwm_read_cnr(qts, td), ==, cnr);
624                     g_assert_cmpuint(pwm_read_cmr(qts, td), ==, cmr);
625                     g_assert_cmpuint(pwm_get_duty(qts, module, pwm),
626                             ==, expected_duty);
627                     if (expected_duty != 0 && expected_duty != 100) {
628                         /* Duty cycle with 0 or 100 doesn't need frequency. */
629                         g_assert_cmpuint(pwm_get_freq(qts, module, pwm),
630                                 ==, expected_freq);
631                     }
632 
633                     /* Test MFT's RPM is correct. */
634                     mft_verify_rpm(qts, td, expected_duty);
635 
636                     /* Test inverted mode */
637                     expected_duty = pwm_compute_duty(cnr, cmr, true);
638                     pwm_write_pcr(qts, td, pcr | CH_INV);
639                     g_assert_cmpuint(pwm_read_pcr(qts, td), ==, pcr | CH_INV);
640                     g_assert_cmpuint(pwm_get_duty(qts, module, pwm),
641                             ==, expected_duty);
642                     if (expected_duty != 0 && expected_duty != 100) {
643                         /* Duty cycle with 0 or 100 doesn't need frequency. */
644                         g_assert_cmpuint(pwm_get_freq(qts, module, pwm),
645                                 ==, expected_freq);
646                     }
647 
648                 }
649             }
650         }
651     }
652 
653     qtest_quit(qts);
654 }
655 
656 static void pwm_add_test(const char *name, const TestData* td,
657         GTestDataFunc fn)
658 {
659     g_autofree char *full_name = g_strdup_printf(
660             "npcm7xx_pwm/module[%d]/pwm[%d]/%s", pwm_module_index(td->module),
661             pwm_index(td->pwm), name);
662     qtest_add_data_func(full_name, td, fn);
663 }
664 #define add_test(name, td) pwm_add_test(#name, td, test_##name)
665 
666 int main(int argc, char **argv)
667 {
668     TestData test_data_list[ARRAY_SIZE(pwm_module_list) * ARRAY_SIZE(pwm_list)];
669 
670     g_test_init(&argc, &argv, NULL);
671 
672     for (int i = 0; i < ARRAY_SIZE(pwm_module_list); ++i) {
673         for (int j = 0; j < ARRAY_SIZE(pwm_list); ++j) {
674             TestData *td = &test_data_list[i * ARRAY_SIZE(pwm_list) + j];
675 
676             td->module = &pwm_module_list[i];
677             td->pwm = &pwm_list[j];
678 
679             add_test(init, td);
680             add_test(oneshot, td);
681             add_test(toggle, td);
682         }
683     }
684 
685     return g_test_run();
686 }
687