xref: /openbmc/qemu/tests/qtest/npcm7xx_emc-test.c (revision cba42d61)
1 /*
2  * QTests for Nuvoton NPCM7xx EMC Modules.
3  *
4  * Copyright 2020 Google LLC
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14  * for more details.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qemu-common.h"
19 #include "libqos/libqos.h"
20 #include "qapi/qmp/qdict.h"
21 #include "qapi/qmp/qnum.h"
22 #include "qemu/bitops.h"
23 #include "qemu/iov.h"
24 
25 /* Name of the emc device. */
26 #define TYPE_NPCM7XX_EMC "npcm7xx-emc"
27 
28 /* Timeout for various operations, in seconds. */
29 #define TIMEOUT_SECONDS 10
30 
31 /* Address in memory of the descriptor. */
32 #define DESC_ADDR (1 << 20) /* 1 MiB */
33 
34 /* Address in memory of the data packet. */
35 #define DATA_ADDR (DESC_ADDR + 4096)
36 
37 #define CRC_LENGTH 4
38 
39 #define NUM_TX_DESCRIPTORS 3
40 #define NUM_RX_DESCRIPTORS 2
41 
42 /* Size of tx,rx test buffers. */
43 #define TX_DATA_LEN 64
44 #define RX_DATA_LEN 64
45 
46 #define TX_STEP_COUNT 10000
47 #define RX_STEP_COUNT 10000
48 
49 /* 32-bit register indices. */
50 typedef enum NPCM7xxPWMRegister {
51     /* Control registers. */
52     REG_CAMCMR,
53     REG_CAMEN,
54 
55     /* There are 16 CAMn[ML] registers. */
56     REG_CAMM_BASE,
57     REG_CAML_BASE,
58 
59     REG_TXDLSA = 0x22,
60     REG_RXDLSA,
61     REG_MCMDR,
62     REG_MIID,
63     REG_MIIDA,
64     REG_FFTCR,
65     REG_TSDR,
66     REG_RSDR,
67     REG_DMARFC,
68     REG_MIEN,
69 
70     /* Status registers. */
71     REG_MISTA,
72     REG_MGSTA,
73     REG_MPCNT,
74     REG_MRPC,
75     REG_MRPCC,
76     REG_MREPC,
77     REG_DMARFS,
78     REG_CTXDSA,
79     REG_CTXBSA,
80     REG_CRXDSA,
81     REG_CRXBSA,
82 
83     NPCM7XX_NUM_EMC_REGS,
84 } NPCM7xxPWMRegister;
85 
86 enum { NUM_CAMML_REGS = 16 };
87 
88 /* REG_CAMCMR fields */
89 /* Enable CAM Compare */
90 #define REG_CAMCMR_ECMP (1 << 4)
91 /* Accept Unicast Packet */
92 #define REG_CAMCMR_AUP (1 << 0)
93 
94 /* REG_MCMDR fields */
95 /* Software Reset */
96 #define REG_MCMDR_SWR (1 << 24)
97 /* Frame Transmission On */
98 #define REG_MCMDR_TXON (1 << 8)
99 /* Accept Long Packet */
100 #define REG_MCMDR_ALP (1 << 1)
101 /* Frame Reception On */
102 #define REG_MCMDR_RXON (1 << 0)
103 
104 /* REG_MIEN fields */
105 /* Enable Transmit Completion Interrupt */
106 #define REG_MIEN_ENTXCP (1 << 18)
107 /* Enable Transmit Interrupt */
108 #define REG_MIEN_ENTXINTR (1 << 16)
109 /* Enable Receive Good Interrupt */
110 #define REG_MIEN_ENRXGD (1 << 4)
111 /* ENable Receive Interrupt */
112 #define REG_MIEN_ENRXINTR (1 << 0)
113 
114 /* REG_MISTA fields */
115 /* Transmit Bus Error Interrupt */
116 #define REG_MISTA_TXBERR (1 << 24)
117 /* Transmit Descriptor Unavailable Interrupt */
118 #define REG_MISTA_TDU (1 << 23)
119 /* Transmit Completion Interrupt */
120 #define REG_MISTA_TXCP (1 << 18)
121 /* Transmit Interrupt */
122 #define REG_MISTA_TXINTR (1 << 16)
123 /* Receive Bus Error Interrupt */
124 #define REG_MISTA_RXBERR (1 << 11)
125 /* Receive Descriptor Unavailable Interrupt */
126 #define REG_MISTA_RDU (1 << 10)
127 /* DMA Early Notification Interrupt */
128 #define REG_MISTA_DENI (1 << 9)
129 /* Maximum Frame Length Interrupt */
130 #define REG_MISTA_DFOI (1 << 8)
131 /* Receive Good Interrupt */
132 #define REG_MISTA_RXGD (1 << 4)
133 /* Packet Too Long Interrupt */
134 #define REG_MISTA_PTLE (1 << 3)
135 /* Receive Interrupt */
136 #define REG_MISTA_RXINTR (1 << 0)
137 
138 typedef struct NPCM7xxEMCTxDesc NPCM7xxEMCTxDesc;
139 typedef struct NPCM7xxEMCRxDesc NPCM7xxEMCRxDesc;
140 
141 struct NPCM7xxEMCTxDesc {
142     uint32_t flags;
143     uint32_t txbsa;
144     uint32_t status_and_length;
145     uint32_t ntxdsa;
146 };
147 
148 struct NPCM7xxEMCRxDesc {
149     uint32_t status_and_length;
150     uint32_t rxbsa;
151     uint32_t reserved;
152     uint32_t nrxdsa;
153 };
154 
155 /* NPCM7xxEMCTxDesc.flags values */
156 /* Owner: 0 = cpu, 1 = emc */
157 #define TX_DESC_FLAG_OWNER_MASK (1 << 31)
158 /* Transmit interrupt enable */
159 #define TX_DESC_FLAG_INTEN (1 << 2)
160 
161 /* NPCM7xxEMCTxDesc.status_and_length values */
162 /* Transmission complete */
163 #define TX_DESC_STATUS_TXCP (1 << 19)
164 /* Transmit interrupt */
165 #define TX_DESC_STATUS_TXINTR (1 << 16)
166 
167 /* NPCM7xxEMCRxDesc.status_and_length values */
168 /* Owner: 0b00 = cpu, 0b10 = emc */
169 #define RX_DESC_STATUS_OWNER_SHIFT 30
170 #define RX_DESC_STATUS_OWNER_MASK 0xc0000000
171 /* Frame Reception Complete */
172 #define RX_DESC_STATUS_RXGD (1 << 20)
173 /* Packet too long */
174 #define RX_DESC_STATUS_PTLE (1 << 19)
175 /* Receive Interrupt */
176 #define RX_DESC_STATUS_RXINTR (1 << 16)
177 
178 #define RX_DESC_PKT_LEN(word) ((uint32_t) (word) & 0xffff)
179 
180 typedef struct EMCModule {
181     int rx_irq;
182     int tx_irq;
183     uint64_t base_addr;
184 } EMCModule;
185 
186 typedef struct TestData {
187     const EMCModule *module;
188 } TestData;
189 
190 static const EMCModule emc_module_list[] = {
191     {
192         .rx_irq     = 15,
193         .tx_irq     = 16,
194         .base_addr  = 0xf0825000
195     },
196     {
197         .rx_irq     = 114,
198         .tx_irq     = 115,
199         .base_addr  = 0xf0826000
200     }
201 };
202 
203 /* Returns the index of the EMC module. */
204 static int emc_module_index(const EMCModule *mod)
205 {
206     ptrdiff_t diff = mod - emc_module_list;
207 
208     g_assert_true(diff >= 0 && diff < ARRAY_SIZE(emc_module_list));
209 
210     return diff;
211 }
212 
213 static void packet_test_clear(void *sockets)
214 {
215     int *test_sockets = sockets;
216 
217     close(test_sockets[0]);
218     g_free(test_sockets);
219 }
220 
221 static int *packet_test_init(int module_num, GString *cmd_line)
222 {
223     int *test_sockets = g_new(int, 2);
224     int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, test_sockets);
225     g_assert_cmpint(ret, != , -1);
226 
227     /*
228      * KISS and use -nic. We specify two nics (both emc{0,1}) because there's
229      * currently no way to specify only emc1: The driver implicitly relies on
230      * emc[i] == nd_table[i].
231      */
232     if (module_num == 0) {
233         g_string_append_printf(cmd_line,
234                                " -nic socket,fd=%d,model=" TYPE_NPCM7XX_EMC " "
235                                " -nic user,model=" TYPE_NPCM7XX_EMC " ",
236                                test_sockets[1]);
237     } else {
238         g_string_append_printf(cmd_line,
239                                " -nic user,model=" TYPE_NPCM7XX_EMC " "
240                                " -nic socket,fd=%d,model=" TYPE_NPCM7XX_EMC " ",
241                                test_sockets[1]);
242     }
243 
244     g_test_queue_destroy(packet_test_clear, test_sockets);
245     return test_sockets;
246 }
247 
248 static uint32_t emc_read(QTestState *qts, const EMCModule *mod,
249                          NPCM7xxPWMRegister regno)
250 {
251     return qtest_readl(qts, mod->base_addr + regno * sizeof(uint32_t));
252 }
253 
254 static void emc_write(QTestState *qts, const EMCModule *mod,
255                       NPCM7xxPWMRegister regno, uint32_t value)
256 {
257     qtest_writel(qts, mod->base_addr + regno * sizeof(uint32_t), value);
258 }
259 
260 static void emc_read_tx_desc(QTestState *qts, uint32_t addr,
261                              NPCM7xxEMCTxDesc *desc)
262 {
263     qtest_memread(qts, addr, desc, sizeof(*desc));
264     desc->flags = le32_to_cpu(desc->flags);
265     desc->txbsa = le32_to_cpu(desc->txbsa);
266     desc->status_and_length = le32_to_cpu(desc->status_and_length);
267     desc->ntxdsa = le32_to_cpu(desc->ntxdsa);
268 }
269 
270 static void emc_write_tx_desc(QTestState *qts, const NPCM7xxEMCTxDesc *desc,
271                               uint32_t addr)
272 {
273     NPCM7xxEMCTxDesc le_desc;
274 
275     le_desc.flags = cpu_to_le32(desc->flags);
276     le_desc.txbsa = cpu_to_le32(desc->txbsa);
277     le_desc.status_and_length = cpu_to_le32(desc->status_and_length);
278     le_desc.ntxdsa = cpu_to_le32(desc->ntxdsa);
279     qtest_memwrite(qts, addr, &le_desc, sizeof(le_desc));
280 }
281 
282 static void emc_read_rx_desc(QTestState *qts, uint32_t addr,
283                              NPCM7xxEMCRxDesc *desc)
284 {
285     qtest_memread(qts, addr, desc, sizeof(*desc));
286     desc->status_and_length = le32_to_cpu(desc->status_and_length);
287     desc->rxbsa = le32_to_cpu(desc->rxbsa);
288     desc->reserved = le32_to_cpu(desc->reserved);
289     desc->nrxdsa = le32_to_cpu(desc->nrxdsa);
290 }
291 
292 static void emc_write_rx_desc(QTestState *qts, const NPCM7xxEMCRxDesc *desc,
293                               uint32_t addr)
294 {
295     NPCM7xxEMCRxDesc le_desc;
296 
297     le_desc.status_and_length = cpu_to_le32(desc->status_and_length);
298     le_desc.rxbsa = cpu_to_le32(desc->rxbsa);
299     le_desc.reserved = cpu_to_le32(desc->reserved);
300     le_desc.nrxdsa = cpu_to_le32(desc->nrxdsa);
301     qtest_memwrite(qts, addr, &le_desc, sizeof(le_desc));
302 }
303 
304 /*
305  * Reset the EMC module.
306  * The module must be reset before, e.g., TXDLSA,RXDLSA are changed.
307  */
308 static bool emc_soft_reset(QTestState *qts, const EMCModule *mod)
309 {
310     uint32_t val;
311     uint64_t end_time;
312 
313     emc_write(qts, mod, REG_MCMDR, REG_MCMDR_SWR);
314 
315     /*
316      * Wait for device to reset as the linux driver does.
317      * During reset the AHB reads 0 for all registers. So first wait for
318      * something that resets to non-zero, and then wait for SWR becoming 0.
319      */
320     end_time = g_get_monotonic_time() + TIMEOUT_SECONDS * G_TIME_SPAN_SECOND;
321 
322     do {
323         qtest_clock_step(qts, 100);
324         val = emc_read(qts, mod, REG_FFTCR);
325     } while (val == 0 && g_get_monotonic_time() < end_time);
326     if (val != 0) {
327         do {
328             qtest_clock_step(qts, 100);
329             val = emc_read(qts, mod, REG_MCMDR);
330             if ((val & REG_MCMDR_SWR) == 0) {
331                 /*
332                  * N.B. The CAMs have been reset here, so macaddr matching of
333                  * incoming packets will not work.
334                  */
335                 return true;
336             }
337         } while (g_get_monotonic_time() < end_time);
338     }
339 
340     g_message("%s: Timeout expired", __func__);
341     return false;
342 }
343 
344 /* Check emc registers are reset to default value. */
345 static void test_init(gconstpointer test_data)
346 {
347     const TestData *td = test_data;
348     const EMCModule *mod = td->module;
349     QTestState *qts = qtest_init("-machine quanta-gsj");
350     int i;
351 
352 #define CHECK_REG(regno, value) \
353   do { \
354     g_assert_cmphex(emc_read(qts, mod, (regno)), ==, (value)); \
355   } while (0)
356 
357     CHECK_REG(REG_CAMCMR, 0);
358     CHECK_REG(REG_CAMEN, 0);
359     CHECK_REG(REG_TXDLSA, 0xfffffffc);
360     CHECK_REG(REG_RXDLSA, 0xfffffffc);
361     CHECK_REG(REG_MCMDR, 0);
362     CHECK_REG(REG_MIID, 0);
363     CHECK_REG(REG_MIIDA, 0x00900000);
364     CHECK_REG(REG_FFTCR, 0x0101);
365     CHECK_REG(REG_DMARFC, 0x0800);
366     CHECK_REG(REG_MIEN, 0);
367     CHECK_REG(REG_MISTA, 0);
368     CHECK_REG(REG_MGSTA, 0);
369     CHECK_REG(REG_MPCNT, 0x7fff);
370     CHECK_REG(REG_MRPC, 0);
371     CHECK_REG(REG_MRPCC, 0);
372     CHECK_REG(REG_MREPC, 0);
373     CHECK_REG(REG_DMARFS, 0);
374     CHECK_REG(REG_CTXDSA, 0);
375     CHECK_REG(REG_CTXBSA, 0);
376     CHECK_REG(REG_CRXDSA, 0);
377     CHECK_REG(REG_CRXBSA, 0);
378 
379 #undef CHECK_REG
380 
381     for (i = 0; i < NUM_CAMML_REGS; ++i) {
382         g_assert_cmpuint(emc_read(qts, mod, REG_CAMM_BASE + i * 2), ==,
383                          0);
384         g_assert_cmpuint(emc_read(qts, mod, REG_CAML_BASE + i * 2), ==,
385                          0);
386     }
387 
388     qtest_quit(qts);
389 }
390 
391 static bool emc_wait_irq(QTestState *qts, const EMCModule *mod, int step,
392                          bool is_tx)
393 {
394     uint64_t end_time =
395         g_get_monotonic_time() + TIMEOUT_SECONDS * G_TIME_SPAN_SECOND;
396 
397     do {
398         if (qtest_get_irq(qts, is_tx ? mod->tx_irq : mod->rx_irq)) {
399             return true;
400         }
401         qtest_clock_step(qts, step);
402     } while (g_get_monotonic_time() < end_time);
403 
404     g_message("%s: Timeout expired", __func__);
405     return false;
406 }
407 
408 static bool emc_wait_mista(QTestState *qts, const EMCModule *mod, int step,
409                            uint32_t flag)
410 {
411     uint64_t end_time =
412         g_get_monotonic_time() + TIMEOUT_SECONDS * G_TIME_SPAN_SECOND;
413 
414     do {
415         uint32_t mista = emc_read(qts, mod, REG_MISTA);
416         if (mista & flag) {
417             return true;
418         }
419         qtest_clock_step(qts, step);
420     } while (g_get_monotonic_time() < end_time);
421 
422     g_message("%s: Timeout expired", __func__);
423     return false;
424 }
425 
426 static bool wait_socket_readable(int fd)
427 {
428     fd_set read_fds;
429     struct timeval tv;
430     int rv;
431 
432     FD_ZERO(&read_fds);
433     FD_SET(fd, &read_fds);
434     tv.tv_sec = TIMEOUT_SECONDS;
435     tv.tv_usec = 0;
436     rv = select(fd + 1, &read_fds, NULL, NULL, &tv);
437     if (rv == -1) {
438         perror("select");
439     } else if (rv == 0) {
440         g_message("%s: Timeout expired", __func__);
441     }
442     return rv == 1;
443 }
444 
445 /* Initialize *desc (in host endian format). */
446 static void init_tx_desc(NPCM7xxEMCTxDesc *desc, size_t count,
447                          uint32_t desc_addr)
448 {
449     g_assert(count >= 2);
450     memset(&desc[0], 0, sizeof(*desc) * count);
451     /* Leave the last one alone, owned by the cpu -> stops transmission. */
452     for (size_t i = 0; i < count - 1; ++i) {
453         desc[i].flags =
454             (TX_DESC_FLAG_OWNER_MASK | /* owner = 1: emc */
455              TX_DESC_FLAG_INTEN |
456              0 | /* crc append = 0 */
457              0 /* padding enable = 0 */);
458         desc[i].status_and_length =
459             (0 | /* collision count = 0 */
460              0 | /* SQE = 0 */
461              0 | /* PAU = 0 */
462              0 | /* TXHA = 0 */
463              0 | /* LC = 0 */
464              0 | /* TXABT = 0 */
465              0 | /* NCS = 0 */
466              0 | /* EXDEF = 0 */
467              0 | /* TXCP = 0 */
468              0 | /* DEF = 0 */
469              0 | /* TXINTR = 0 */
470              0 /* length filled in later */);
471         desc[i].ntxdsa = desc_addr + (i + 1) * sizeof(*desc);
472     }
473 }
474 
475 static void enable_tx(QTestState *qts, const EMCModule *mod,
476                       const NPCM7xxEMCTxDesc *desc, size_t count,
477                       uint32_t desc_addr, uint32_t mien_flags)
478 {
479     /* Write the descriptors to guest memory. */
480     for (size_t i = 0; i < count; ++i) {
481         emc_write_tx_desc(qts, desc + i, desc_addr + i * sizeof(*desc));
482     }
483 
484     /* Trigger sending the packet. */
485     /* The module must be reset before changing TXDLSA. */
486     g_assert(emc_soft_reset(qts, mod));
487     emc_write(qts, mod, REG_TXDLSA, desc_addr);
488     emc_write(qts, mod, REG_CTXDSA, ~0);
489     emc_write(qts, mod, REG_MIEN, REG_MIEN_ENTXCP | mien_flags);
490     {
491         uint32_t mcmdr = emc_read(qts, mod, REG_MCMDR);
492         mcmdr |= REG_MCMDR_TXON;
493         emc_write(qts, mod, REG_MCMDR, mcmdr);
494     }
495 
496     /* Prod the device to send the packet. */
497     emc_write(qts, mod, REG_TSDR, 1);
498 }
499 
500 static void emc_send_verify1(QTestState *qts, const EMCModule *mod, int fd,
501                              bool with_irq, uint32_t desc_addr,
502                              uint32_t next_desc_addr,
503                              const char *test_data, int test_size)
504 {
505     NPCM7xxEMCTxDesc result_desc;
506     uint32_t expected_mask, expected_value, recv_len;
507     int ret;
508     char buffer[TX_DATA_LEN];
509 
510     g_assert(wait_socket_readable(fd));
511 
512     /* Read the descriptor back. */
513     emc_read_tx_desc(qts, desc_addr, &result_desc);
514     /* Descriptor should be owned by cpu now. */
515     g_assert((result_desc.flags & TX_DESC_FLAG_OWNER_MASK) == 0);
516     /* Test the status bits, ignoring the length field. */
517     expected_mask = 0xffff << 16;
518     expected_value = TX_DESC_STATUS_TXCP;
519     if (with_irq) {
520         expected_value |= TX_DESC_STATUS_TXINTR;
521     }
522     g_assert_cmphex((result_desc.status_and_length & expected_mask), ==,
523                     expected_value);
524 
525     /* Check data sent to the backend. */
526     recv_len = ~0;
527     ret = qemu_recv(fd, &recv_len, sizeof(recv_len), MSG_DONTWAIT);
528     g_assert_cmpint(ret, == , sizeof(recv_len));
529 
530     g_assert(wait_socket_readable(fd));
531     memset(buffer, 0xff, sizeof(buffer));
532     ret = qemu_recv(fd, buffer, test_size, MSG_DONTWAIT);
533     g_assert_cmpmem(buffer, ret, test_data, test_size);
534 }
535 
536 static void emc_send_verify(QTestState *qts, const EMCModule *mod, int fd,
537                             bool with_irq)
538 {
539     NPCM7xxEMCTxDesc desc[NUM_TX_DESCRIPTORS];
540     uint32_t desc_addr = DESC_ADDR;
541     static const char test1_data[] = "TEST1";
542     static const char test2_data[] = "Testing 1 2 3 ...";
543     uint32_t data1_addr = DATA_ADDR;
544     uint32_t data2_addr = data1_addr + sizeof(test1_data);
545     bool got_tdu;
546     uint32_t end_desc_addr;
547 
548     /* Prepare test data buffer. */
549     qtest_memwrite(qts, data1_addr, test1_data, sizeof(test1_data));
550     qtest_memwrite(qts, data2_addr, test2_data, sizeof(test2_data));
551 
552     init_tx_desc(&desc[0], NUM_TX_DESCRIPTORS, desc_addr);
553     desc[0].txbsa = data1_addr;
554     desc[0].status_and_length |= sizeof(test1_data);
555     desc[1].txbsa = data2_addr;
556     desc[1].status_and_length |= sizeof(test2_data);
557 
558     enable_tx(qts, mod, &desc[0], NUM_TX_DESCRIPTORS, desc_addr,
559               with_irq ? REG_MIEN_ENTXINTR : 0);
560 
561     /*
562      * It's problematic to observe the interrupt for each packet.
563      * Instead just wait until all the packets go out.
564      */
565     got_tdu = false;
566     while (!got_tdu) {
567         if (with_irq) {
568             g_assert_true(emc_wait_irq(qts, mod, TX_STEP_COUNT,
569                                        /*is_tx=*/true));
570         } else {
571             g_assert_true(emc_wait_mista(qts, mod, TX_STEP_COUNT,
572                                          REG_MISTA_TXINTR));
573         }
574         got_tdu = !!(emc_read(qts, mod, REG_MISTA) & REG_MISTA_TDU);
575         /* If we don't have TDU yet, reset the interrupt. */
576         if (!got_tdu) {
577             emc_write(qts, mod, REG_MISTA,
578                       emc_read(qts, mod, REG_MISTA) & 0xffff0000);
579         }
580     }
581 
582     end_desc_addr = desc_addr + 2 * sizeof(desc[0]);
583     g_assert_cmphex(emc_read(qts, mod, REG_CTXDSA), ==, end_desc_addr);
584     g_assert_cmphex(emc_read(qts, mod, REG_MISTA), ==,
585                     REG_MISTA_TXCP | REG_MISTA_TXINTR | REG_MISTA_TDU);
586 
587     emc_send_verify1(qts, mod, fd, with_irq,
588                      desc_addr, end_desc_addr,
589                      test1_data, sizeof(test1_data));
590     emc_send_verify1(qts, mod, fd, with_irq,
591                      desc_addr + sizeof(desc[0]), end_desc_addr,
592                      test2_data, sizeof(test2_data));
593 }
594 
595 /* Initialize *desc (in host endian format). */
596 static void init_rx_desc(NPCM7xxEMCRxDesc *desc, size_t count,
597                          uint32_t desc_addr, uint32_t data_addr)
598 {
599     g_assert_true(count >= 2);
600     memset(desc, 0, sizeof(*desc) * count);
601     desc[0].rxbsa = data_addr;
602     desc[0].status_and_length =
603         (0b10 << RX_DESC_STATUS_OWNER_SHIFT | /* owner = 10: emc */
604          0 | /* RP = 0 */
605          0 | /* ALIE = 0 */
606          0 | /* RXGD = 0 */
607          0 | /* PTLE = 0 */
608          0 | /* CRCE = 0 */
609          0 | /* RXINTR = 0 */
610          0   /* length (filled in later) */);
611     /* Leave the last one alone, owned by the cpu -> stops transmission. */
612     desc[0].nrxdsa = desc_addr + sizeof(*desc);
613 }
614 
615 static void enable_rx(QTestState *qts, const EMCModule *mod,
616                       const NPCM7xxEMCRxDesc *desc, size_t count,
617                       uint32_t desc_addr, uint32_t mien_flags,
618                       uint32_t mcmdr_flags)
619 {
620     /*
621      * Write the descriptor to guest memory.
622      * FWIW, IWBN if the docs said the buffer needs to be at least DMARFC
623      * bytes.
624      */
625     for (size_t i = 0; i < count; ++i) {
626         emc_write_rx_desc(qts, desc + i, desc_addr + i * sizeof(*desc));
627     }
628 
629     /* Trigger receiving the packet. */
630     /* The module must be reset before changing RXDLSA. */
631     g_assert(emc_soft_reset(qts, mod));
632     emc_write(qts, mod, REG_RXDLSA, desc_addr);
633     emc_write(qts, mod, REG_MIEN, REG_MIEN_ENRXGD | mien_flags);
634 
635     /*
636      * We don't know what the device's macaddr is, so just accept all
637      * unicast packets (AUP).
638      */
639     emc_write(qts, mod, REG_CAMCMR, REG_CAMCMR_AUP);
640     emc_write(qts, mod, REG_CAMEN, 1 << 0);
641     {
642         uint32_t mcmdr = emc_read(qts, mod, REG_MCMDR);
643         mcmdr |= REG_MCMDR_RXON | mcmdr_flags;
644         emc_write(qts, mod, REG_MCMDR, mcmdr);
645     }
646 
647     /* Prod the device to accept a packet. */
648     emc_write(qts, mod, REG_RSDR, 1);
649 }
650 
651 static void emc_recv_verify(QTestState *qts, const EMCModule *mod, int fd,
652                             bool with_irq)
653 {
654     NPCM7xxEMCRxDesc desc[NUM_RX_DESCRIPTORS];
655     uint32_t desc_addr = DESC_ADDR;
656     uint32_t data_addr = DATA_ADDR;
657     int ret;
658     uint32_t expected_mask, expected_value;
659     NPCM7xxEMCRxDesc result_desc;
660 
661     /* Prepare test data buffer. */
662     const char test[RX_DATA_LEN] = "TEST";
663     int len = htonl(sizeof(test));
664     const struct iovec iov[] = {
665         {
666             .iov_base = &len,
667             .iov_len = sizeof(len),
668         },{
669             .iov_base = (char *) test,
670             .iov_len = sizeof(test),
671         },
672     };
673 
674     /*
675      * Reset the device BEFORE sending a test packet, otherwise the packet
676      * may get swallowed by an active device of an earlier test.
677      */
678     init_rx_desc(&desc[0], NUM_RX_DESCRIPTORS, desc_addr, data_addr);
679     enable_rx(qts, mod, &desc[0], NUM_RX_DESCRIPTORS, desc_addr,
680               with_irq ? REG_MIEN_ENRXINTR : 0, 0);
681 
682     /* Send test packet to device's socket. */
683     ret = iov_send(fd, iov, 2, 0, sizeof(len) + sizeof(test));
684     g_assert_cmpint(ret, == , sizeof(test) + sizeof(len));
685 
686     /* Wait for RX interrupt. */
687     if (with_irq) {
688         g_assert_true(emc_wait_irq(qts, mod, RX_STEP_COUNT, /*is_tx=*/false));
689     } else {
690         g_assert_true(emc_wait_mista(qts, mod, RX_STEP_COUNT, REG_MISTA_RXGD));
691     }
692 
693     g_assert_cmphex(emc_read(qts, mod, REG_CRXDSA), ==,
694                     desc_addr + sizeof(desc[0]));
695 
696     expected_mask = 0xffff;
697     expected_value = (REG_MISTA_DENI |
698                       REG_MISTA_RXGD |
699                       REG_MISTA_RXINTR);
700     g_assert_cmphex((emc_read(qts, mod, REG_MISTA) & expected_mask),
701                     ==, expected_value);
702 
703     /* Read the descriptor back. */
704     emc_read_rx_desc(qts, desc_addr, &result_desc);
705     /* Descriptor should be owned by cpu now. */
706     g_assert((result_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK) == 0);
707     /* Test the status bits, ignoring the length field. */
708     expected_mask = 0xffff << 16;
709     expected_value = RX_DESC_STATUS_RXGD;
710     if (with_irq) {
711         expected_value |= RX_DESC_STATUS_RXINTR;
712     }
713     g_assert_cmphex((result_desc.status_and_length & expected_mask), ==,
714                     expected_value);
715     g_assert_cmpint(RX_DESC_PKT_LEN(result_desc.status_and_length), ==,
716                     RX_DATA_LEN + CRC_LENGTH);
717 
718     {
719         char buffer[RX_DATA_LEN];
720         qtest_memread(qts, data_addr, buffer, sizeof(buffer));
721         g_assert_cmpstr(buffer, == , "TEST");
722     }
723 }
724 
725 static void emc_test_ptle(QTestState *qts, const EMCModule *mod, int fd)
726 {
727     NPCM7xxEMCRxDesc desc[NUM_RX_DESCRIPTORS];
728     uint32_t desc_addr = DESC_ADDR;
729     uint32_t data_addr = DATA_ADDR;
730     int ret;
731     NPCM7xxEMCRxDesc result_desc;
732     uint32_t expected_mask, expected_value;
733 
734     /* Prepare test data buffer. */
735 #define PTLE_DATA_LEN 1600
736     char test_data[PTLE_DATA_LEN];
737     int len = htonl(sizeof(test_data));
738     const struct iovec iov[] = {
739         {
740             .iov_base = &len,
741             .iov_len = sizeof(len),
742         },{
743             .iov_base = (char *) test_data,
744             .iov_len = sizeof(test_data),
745         },
746     };
747     memset(test_data, 42, sizeof(test_data));
748 
749     /*
750      * Reset the device BEFORE sending a test packet, otherwise the packet
751      * may get swallowed by an active device of an earlier test.
752      */
753     init_rx_desc(&desc[0], NUM_RX_DESCRIPTORS, desc_addr, data_addr);
754     enable_rx(qts, mod, &desc[0], NUM_RX_DESCRIPTORS, desc_addr,
755               REG_MIEN_ENRXINTR, REG_MCMDR_ALP);
756 
757     /* Send test packet to device's socket. */
758     ret = iov_send(fd, iov, 2, 0, sizeof(len) + sizeof(test_data));
759     g_assert_cmpint(ret, == , sizeof(test_data) + sizeof(len));
760 
761     /* Wait for RX interrupt. */
762     g_assert_true(emc_wait_irq(qts, mod, RX_STEP_COUNT, /*is_tx=*/false));
763 
764     /* Read the descriptor back. */
765     emc_read_rx_desc(qts, desc_addr, &result_desc);
766     /* Descriptor should be owned by cpu now. */
767     g_assert((result_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK) == 0);
768     /* Test the status bits, ignoring the length field. */
769     expected_mask = 0xffff << 16;
770     expected_value = (RX_DESC_STATUS_RXGD |
771                       RX_DESC_STATUS_PTLE |
772                       RX_DESC_STATUS_RXINTR);
773     g_assert_cmphex((result_desc.status_and_length & expected_mask), ==,
774                     expected_value);
775     g_assert_cmpint(RX_DESC_PKT_LEN(result_desc.status_and_length), ==,
776                     PTLE_DATA_LEN + CRC_LENGTH);
777 
778     {
779         char buffer[PTLE_DATA_LEN];
780         qtest_memread(qts, data_addr, buffer, sizeof(buffer));
781         g_assert(memcmp(buffer, test_data, PTLE_DATA_LEN) == 0);
782     }
783 }
784 
785 static void test_tx(gconstpointer test_data)
786 {
787     const TestData *td = test_data;
788     GString *cmd_line = g_string_new("-machine quanta-gsj");
789     int *test_sockets = packet_test_init(emc_module_index(td->module),
790                                          cmd_line);
791     QTestState *qts = qtest_init(cmd_line->str);
792 
793     /*
794      * TODO: For pedantic correctness test_sockets[0] should be closed after
795      * the fork and before the exec, but that will require some harness
796      * improvements.
797      */
798     close(test_sockets[1]);
799     /* Defensive programming */
800     test_sockets[1] = -1;
801 
802     qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
803 
804     emc_send_verify(qts, td->module, test_sockets[0], /*with_irq=*/false);
805     emc_send_verify(qts, td->module, test_sockets[0], /*with_irq=*/true);
806 
807     qtest_quit(qts);
808 }
809 
810 static void test_rx(gconstpointer test_data)
811 {
812     const TestData *td = test_data;
813     GString *cmd_line = g_string_new("-machine quanta-gsj");
814     int *test_sockets = packet_test_init(emc_module_index(td->module),
815                                          cmd_line);
816     QTestState *qts = qtest_init(cmd_line->str);
817 
818     /*
819      * TODO: For pedantic correctness test_sockets[0] should be closed after
820      * the fork and before the exec, but that will require some harness
821      * improvements.
822      */
823     close(test_sockets[1]);
824     /* Defensive programming */
825     test_sockets[1] = -1;
826 
827     qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
828 
829     emc_recv_verify(qts, td->module, test_sockets[0], /*with_irq=*/false);
830     emc_recv_verify(qts, td->module, test_sockets[0], /*with_irq=*/true);
831     emc_test_ptle(qts, td->module, test_sockets[0]);
832 
833     qtest_quit(qts);
834 }
835 
836 static void emc_add_test(const char *name, const TestData* td,
837                          GTestDataFunc fn)
838 {
839     g_autofree char *full_name = g_strdup_printf(
840             "npcm7xx_emc/emc[%d]/%s", emc_module_index(td->module), name);
841     qtest_add_data_func(full_name, td, fn);
842 }
843 #define add_test(name, td) emc_add_test(#name, td, test_##name)
844 
845 int main(int argc, char **argv)
846 {
847     TestData test_data_list[ARRAY_SIZE(emc_module_list)];
848 
849     g_test_init(&argc, &argv, NULL);
850 
851     for (int i = 0; i < ARRAY_SIZE(emc_module_list); ++i) {
852         TestData *td = &test_data_list[i];
853 
854         td->module = &emc_module_list[i];
855 
856         add_test(init, td);
857         add_test(tx, td);
858         add_test(rx, td);
859     }
860 
861     return g_test_run();
862 }
863