xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision fe1127da)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "fuzz.h"
20 #include "fork_fuzz.h"
21 #include "exec/address-spaces.h"
22 #include "string.h"
23 #include "exec/memory.h"
24 #include "exec/ramblock.h"
25 #include "exec/address-spaces.h"
26 #include "hw/qdev-core.h"
27 #include "hw/pci/pci.h"
28 #include "hw/boards.h"
29 #include "generic_fuzz_configs.h"
30 
31 /*
32  * SEPARATOR is used to separate "operations" in the fuzz input
33  */
34 #define SEPARATOR "FUZZ"
35 
36 enum cmds {
37     OP_IN,
38     OP_OUT,
39     OP_READ,
40     OP_WRITE,
41     OP_PCI_READ,
42     OP_PCI_WRITE,
43     OP_DISABLE_PCI,
44     OP_ADD_DMA_PATTERN,
45     OP_CLEAR_DMA_PATTERNS,
46     OP_CLOCK_STEP,
47 };
48 
49 #define DEFAULT_TIMEOUT_US 100000
50 #define USEC_IN_SEC 1000000000
51 
52 #define MAX_DMA_FILL_SIZE 0x10000
53 
54 #define PCI_HOST_BRIDGE_CFG 0xcf8
55 #define PCI_HOST_BRIDGE_DATA 0xcfc
56 
57 typedef struct {
58     ram_addr_t addr;
59     ram_addr_t size; /* The number of bytes until the end of the I/O region */
60 } address_range;
61 
62 static useconds_t timeout = DEFAULT_TIMEOUT_US;
63 
64 static bool qtest_log_enabled;
65 
66 /*
67  * A pattern used to populate a DMA region or perform a memwrite. This is
68  * useful for e.g. populating tables of unique addresses.
69  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
70  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
71  */
72 typedef struct {
73     uint8_t index;      /* Index of a byte to increment by stride */
74     uint8_t stride;     /* Increment each index'th byte by this amount */
75     size_t len;
76     const uint8_t *data;
77 } pattern;
78 
79 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
80 static bool avoid_double_fetches;
81 
82 static QTestState *qts_global; /* Need a global for the DMA callback */
83 
84 /*
85  * List of memory regions that are children of QOM objects specified by the
86  * user for fuzzing.
87  */
88 static GHashTable *fuzzable_memoryregions;
89 static GPtrArray *fuzzable_pci_devices;
90 
91 struct get_io_cb_info {
92     int index;
93     int found;
94     address_range result;
95 };
96 
97 static int get_io_address_cb(Int128 start, Int128 size,
98                           const MemoryRegion *mr, void *opaque) {
99     struct get_io_cb_info *info = opaque;
100     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
101         if (info->index == 0) {
102             info->result.addr = (ram_addr_t)start;
103             info->result.size = (ram_addr_t)size;
104             info->found = 1;
105             return 1;
106         }
107         info->index--;
108     }
109     return 0;
110 }
111 
112 /*
113  * List of dma regions populated since the last fuzzing command. Used to ensure
114  * that we only write to each DMA address once, to avoid race conditions when
115  * building reproducers.
116  */
117 static GArray *dma_regions;
118 
119 static GArray *dma_patterns;
120 static int dma_pattern_index;
121 static bool pci_disabled;
122 
123 /*
124  * Allocate a block of memory and populate it with a pattern.
125  */
126 static void *pattern_alloc(pattern p, size_t len)
127 {
128     int i;
129     uint8_t *buf = g_malloc(len);
130     uint8_t sum = 0;
131 
132     for (i = 0; i < len; ++i) {
133         buf[i] = p.data[i % p.len];
134         if ((i % p.len) == p.index) {
135             buf[i] += sum;
136             sum += p.stride;
137         }
138     }
139     return buf;
140 }
141 
142 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
143 {
144     unsigned access_size_max = mr->ops->valid.max_access_size;
145 
146     /*
147      * Regions are assumed to support 1-4 byte accesses unless
148      * otherwise specified.
149      */
150     if (access_size_max == 0) {
151         access_size_max = 4;
152     }
153 
154     /* Bound the maximum access by the alignment of the address.  */
155     if (!mr->ops->impl.unaligned) {
156         unsigned align_size_max = addr & -addr;
157         if (align_size_max != 0 && align_size_max < access_size_max) {
158             access_size_max = align_size_max;
159         }
160     }
161 
162     /* Don't attempt accesses larger than the maximum.  */
163     if (l > access_size_max) {
164         l = access_size_max;
165     }
166     l = pow2floor(l);
167 
168     return l;
169 }
170 
171 /*
172  * Call-back for functions that perform DMA reads from guest memory. Confirm
173  * that the region has not already been populated since the last loop in
174  * generic_fuzz(), avoiding potential race-conditions, which we don't have
175  * a good way for reproducing right now.
176  */
177 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr, bool is_write)
178 {
179     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
180     if (!qts_global) {
181         return;
182     }
183 
184     /*
185      * Return immediately if:
186      * - We have no DMA patterns defined
187      * - The length of the DMA read request is zero
188      * - The DMA read is hitting an MR other than the machine's main RAM
189      * - The DMA request is not a read (what happens for a address_space_map
190      *   with is_write=True? Can the device use the same pointer to do reads?)
191      * - The DMA request hits past the bounds of our RAM
192      */
193     if (dma_patterns->len == 0
194         || len == 0
195         || mr != current_machine->ram
196         || is_write
197         || addr > current_machine->ram_size) {
198         return;
199     }
200 
201     /*
202      * If we overlap with any existing dma_regions, split the range and only
203      * populate the non-overlapping parts.
204      */
205     address_range region;
206     bool double_fetch = false;
207     for (int i = 0;
208          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
209          ++i) {
210         region = g_array_index(dma_regions, address_range, i);
211         if (addr < region.addr + region.size && addr + len > region.addr) {
212             double_fetch = true;
213             if (addr < region.addr
214                 && avoid_double_fetches) {
215                 fuzz_dma_read_cb(addr, region.addr - addr, mr, is_write);
216             }
217             if (addr + len > region.addr + region.size
218                 && avoid_double_fetches) {
219                 fuzz_dma_read_cb(region.addr + region.size,
220                         addr + len - (region.addr + region.size), mr, is_write);
221             }
222             return;
223         }
224     }
225 
226     /* Cap the length of the DMA access to something reasonable */
227     len = MIN(len, MAX_DMA_FILL_SIZE);
228 
229     address_range ar = {addr, len};
230     g_array_append_val(dma_regions, ar);
231     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
232     void *buf_base = pattern_alloc(p, ar.size);
233     void *buf = buf_base;
234     hwaddr l, addr1;
235     MemoryRegion *mr1;
236     while (len > 0) {
237         l = len;
238         mr1 = address_space_translate(first_cpu->as,
239                                       addr, &addr1, &l, true,
240                                       MEMTXATTRS_UNSPECIFIED);
241 
242         if (!(memory_region_is_ram(mr1) ||
243               memory_region_is_romd(mr1))) {
244             l = memory_access_size(mr1, l, addr1);
245         } else {
246             /* ROM/RAM case */
247             if (qtest_log_enabled) {
248                 /*
249                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
250                 * that will be written by qtest.c with a DMA tag, so we can reorder
251                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
252                 * command.
253                 */
254                 fprintf(stderr, "[DMA] ");
255                 if (double_fetch) {
256                     fprintf(stderr, "[DOUBLE-FETCH] ");
257                 }
258                 fflush(stderr);
259             }
260             qtest_memwrite(qts_global, addr, buf, l);
261         }
262         len -= l;
263         buf += l;
264         addr += l;
265 
266     }
267     g_free(buf_base);
268 
269     /* Increment the index of the pattern for the next DMA access */
270     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
271 }
272 
273 /*
274  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
275  * a physical address. To do this, we iterate over all of the matched
276  * MemoryRegions. Check whether each region exists within the particular io
277  * space. Return the absolute address of the offset within the index'th region
278  * that is a subregion of the io_space and the distance until the end of the
279  * memory region.
280  */
281 static bool get_io_address(address_range *result, AddressSpace *as,
282                             uint8_t index,
283                             uint32_t offset) {
284     FlatView *view;
285     view = as->current_map;
286     g_assert(view);
287     struct get_io_cb_info cb_info = {};
288 
289     cb_info.index = index;
290 
291     /*
292      * Loop around the FlatView until we match "index" number of
293      * fuzzable_memoryregions, or until we know that there are no matching
294      * memory_regions.
295      */
296     do {
297         flatview_for_each_range(view, get_io_address_cb , &cb_info);
298     } while (cb_info.index != index && !cb_info.found);
299 
300     *result = cb_info.result;
301     if (result->size) {
302         offset = offset % result->size;
303         result->addr += offset;
304         result->size -= offset;
305     }
306     return cb_info.found;
307 }
308 
309 static bool get_pio_address(address_range *result,
310                             uint8_t index, uint16_t offset)
311 {
312     /*
313      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
314      * can contain an addr that extends past the PIO space. When we pass this
315      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
316      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
317      * that the address here is within the PIO space limits.
318      */
319     bool found = get_io_address(result, &address_space_io, index, offset);
320     return result->addr <= 0xFFFF ? found : false;
321 }
322 
323 static bool get_mmio_address(address_range *result,
324                              uint8_t index, uint32_t offset)
325 {
326     return get_io_address(result, &address_space_memory, index, offset);
327 }
328 
329 static void op_in(QTestState *s, const unsigned char * data, size_t len)
330 {
331     enum Sizes {Byte, Word, Long, end_sizes};
332     struct {
333         uint8_t size;
334         uint8_t base;
335         uint16_t offset;
336     } a;
337     address_range abs;
338 
339     if (len < sizeof(a)) {
340         return;
341     }
342     memcpy(&a, data, sizeof(a));
343     if (get_pio_address(&abs, a.base, a.offset) == 0) {
344         return;
345     }
346 
347     switch (a.size %= end_sizes) {
348     case Byte:
349         qtest_inb(s, abs.addr);
350         break;
351     case Word:
352         if (abs.size >= 2) {
353             qtest_inw(s, abs.addr);
354         }
355         break;
356     case Long:
357         if (abs.size >= 4) {
358             qtest_inl(s, abs.addr);
359         }
360         break;
361     }
362 }
363 
364 static void op_out(QTestState *s, const unsigned char * data, size_t len)
365 {
366     enum Sizes {Byte, Word, Long, end_sizes};
367     struct {
368         uint8_t size;
369         uint8_t base;
370         uint16_t offset;
371         uint32_t value;
372     } a;
373     address_range abs;
374 
375     if (len < sizeof(a)) {
376         return;
377     }
378     memcpy(&a, data, sizeof(a));
379 
380     if (get_pio_address(&abs, a.base, a.offset) == 0) {
381         return;
382     }
383 
384     switch (a.size %= end_sizes) {
385     case Byte:
386         qtest_outb(s, abs.addr, a.value & 0xFF);
387         break;
388     case Word:
389         if (abs.size >= 2) {
390             qtest_outw(s, abs.addr, a.value & 0xFFFF);
391         }
392         break;
393     case Long:
394         if (abs.size >= 4) {
395             qtest_outl(s, abs.addr, a.value);
396         }
397         break;
398     }
399 }
400 
401 static void op_read(QTestState *s, const unsigned char * data, size_t len)
402 {
403     enum Sizes {Byte, Word, Long, Quad, end_sizes};
404     struct {
405         uint8_t size;
406         uint8_t base;
407         uint32_t offset;
408     } a;
409     address_range abs;
410 
411     if (len < sizeof(a)) {
412         return;
413     }
414     memcpy(&a, data, sizeof(a));
415 
416     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
417         return;
418     }
419 
420     switch (a.size %= end_sizes) {
421     case Byte:
422         qtest_readb(s, abs.addr);
423         break;
424     case Word:
425         if (abs.size >= 2) {
426             qtest_readw(s, abs.addr);
427         }
428         break;
429     case Long:
430         if (abs.size >= 4) {
431             qtest_readl(s, abs.addr);
432         }
433         break;
434     case Quad:
435         if (abs.size >= 8) {
436             qtest_readq(s, abs.addr);
437         }
438         break;
439     }
440 }
441 
442 static void op_write(QTestState *s, const unsigned char * data, size_t len)
443 {
444     enum Sizes {Byte, Word, Long, Quad, end_sizes};
445     struct {
446         uint8_t size;
447         uint8_t base;
448         uint32_t offset;
449         uint64_t value;
450     } a;
451     address_range abs;
452 
453     if (len < sizeof(a)) {
454         return;
455     }
456     memcpy(&a, data, sizeof(a));
457 
458     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
459         return;
460     }
461 
462     switch (a.size %= end_sizes) {
463     case Byte:
464             qtest_writeb(s, abs.addr, a.value & 0xFF);
465         break;
466     case Word:
467         if (abs.size >= 2) {
468             qtest_writew(s, abs.addr, a.value & 0xFFFF);
469         }
470         break;
471     case Long:
472         if (abs.size >= 4) {
473             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
474         }
475         break;
476     case Quad:
477         if (abs.size >= 8) {
478             qtest_writeq(s, abs.addr, a.value);
479         }
480         break;
481     }
482 }
483 
484 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
485 {
486     enum Sizes {Byte, Word, Long, end_sizes};
487     struct {
488         uint8_t size;
489         uint8_t base;
490         uint8_t offset;
491     } a;
492     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
493         return;
494     }
495     memcpy(&a, data, sizeof(a));
496     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
497                                   a.base % fuzzable_pci_devices->len);
498     int devfn = dev->devfn;
499     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
500     switch (a.size %= end_sizes) {
501     case Byte:
502         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
503         break;
504     case Word:
505         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
506         break;
507     case Long:
508         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
509         break;
510     }
511 }
512 
513 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
514 {
515     enum Sizes {Byte, Word, Long, end_sizes};
516     struct {
517         uint8_t size;
518         uint8_t base;
519         uint8_t offset;
520         uint32_t value;
521     } a;
522     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
523         return;
524     }
525     memcpy(&a, data, sizeof(a));
526     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
527                                   a.base % fuzzable_pci_devices->len);
528     int devfn = dev->devfn;
529     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
530     switch (a.size %= end_sizes) {
531     case Byte:
532         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
533         break;
534     case Word:
535         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
536         break;
537     case Long:
538         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
539         break;
540     }
541 }
542 
543 static void op_add_dma_pattern(QTestState *s,
544                                const unsigned char *data, size_t len)
545 {
546     struct {
547         /*
548          * index and stride can be used to increment the index-th byte of the
549          * pattern by the value stride, for each loop of the pattern.
550          */
551         uint8_t index;
552         uint8_t stride;
553     } a;
554 
555     if (len < sizeof(a) + 1) {
556         return;
557     }
558     memcpy(&a, data, sizeof(a));
559     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
560     p.index = a.index % p.len;
561     g_array_append_val(dma_patterns, p);
562     return;
563 }
564 
565 static void op_clear_dma_patterns(QTestState *s,
566                                   const unsigned char *data, size_t len)
567 {
568     g_array_set_size(dma_patterns, 0);
569     dma_pattern_index = 0;
570 }
571 
572 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
573 {
574     qtest_clock_step_next(s);
575 }
576 
577 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
578 {
579     pci_disabled = true;
580 }
581 
582 static void handle_timeout(int sig)
583 {
584     if (qtest_log_enabled) {
585         fprintf(stderr, "[Timeout]\n");
586         fflush(stderr);
587     }
588     _Exit(0);
589 }
590 
591 /*
592  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
593  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
594  * specify the boundaries between commands. SEPARATOR is used to separate
595  * "operations" in the fuzz input. Why use a separator, instead of just using
596  * the operations' length to identify operation boundaries?
597  *   1. This is a simple way to support variable-length operations
598  *   2. This adds "stability" to the input.
599  *      For example take the input "AbBcgDefg", where there is no separator and
600  *      Opcodes are capitalized.
601  *      Simply, by removing the first byte, we end up with a very different
602  *      sequence:
603  *      BbcGdefg...
604  *      By adding a separator, we avoid this problem:
605  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
606  *      Since B uses two additional bytes as operands, the first "B" will be
607  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
608  *      bytes are likely to be pruned, eventually.
609  *
610  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
611  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
612  *  -dict), though this should not be necessary.
613  *
614  * As a result, the stream of bytes is converted into a sequence of commands.
615  * In a simplified example where SEPARATOR is 0xFF:
616  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
617  * becomes this sequence of commands:
618  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
619  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
620  * 01          -> op01 (-,0)    -> out (-,0)
621  * ...
622  *
623  * Note here that it is the job of the individual opcode functions to check
624  * that enough data was provided. I.e. in the last command out (,0), out needs
625  * to check that there is not enough data provided to select an address/value
626  * for the operation.
627  */
628 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
629 {
630     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
631         [OP_IN]                 = op_in,
632         [OP_OUT]                = op_out,
633         [OP_READ]               = op_read,
634         [OP_WRITE]              = op_write,
635         [OP_PCI_READ]           = op_pci_read,
636         [OP_PCI_WRITE]          = op_pci_write,
637         [OP_DISABLE_PCI]        = op_disable_pci,
638         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
639         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
640         [OP_CLOCK_STEP]         = op_clock_step,
641     };
642     const unsigned char *cmd = Data;
643     const unsigned char *nextcmd;
644     size_t cmd_len;
645     uint8_t op;
646 
647     if (fork() == 0) {
648         /*
649          * Sometimes the fuzzer will find inputs that take quite a long time to
650          * process. Often times, these inputs do not result in new coverage.
651          * Even if these inputs might be interesting, they can slow down the
652          * fuzzer, overall. Set a timeout to avoid hurting performance, too much
653          */
654         if (timeout) {
655             struct sigaction sact;
656             struct itimerval timer;
657 
658             sigemptyset(&sact.sa_mask);
659             sact.sa_flags   = SA_NODEFER;
660             sact.sa_handler = handle_timeout;
661             sigaction(SIGALRM, &sact, NULL);
662 
663             memset(&timer, 0, sizeof(timer));
664             timer.it_value.tv_sec = timeout / USEC_IN_SEC;
665             timer.it_value.tv_usec = timeout % USEC_IN_SEC;
666             setitimer(ITIMER_VIRTUAL, &timer, NULL);
667         }
668 
669         op_clear_dma_patterns(s, NULL, 0);
670         pci_disabled = false;
671 
672         while (cmd && Size) {
673             /* Get the length until the next command or end of input */
674             nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
675             cmd_len = nextcmd ? nextcmd - cmd : Size;
676 
677             if (cmd_len > 0) {
678                 /* Interpret the first byte of the command as an opcode */
679                 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
680                 ops[op](s, cmd + 1, cmd_len - 1);
681 
682                 /* Run the main loop */
683                 flush_events(s);
684             }
685             /* Advance to the next command */
686             cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
687             Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
688             g_array_set_size(dma_regions, 0);
689         }
690         _Exit(0);
691     } else {
692         flush_events(s);
693         wait(0);
694     }
695 }
696 
697 static void usage(void)
698 {
699     printf("Please specify the following environment variables:\n");
700     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
701     printf("QEMU_FUZZ_OBJECTS= "
702             "a space separated list of QOM type names for objects to fuzz\n");
703     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
704             "Try to avoid racy DMA double fetch bugs? %d by default\n",
705             avoid_double_fetches);
706     printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
707             "0 to disable. %d by default\n", timeout);
708     exit(0);
709 }
710 
711 static int locate_fuzz_memory_regions(Object *child, void *opaque)
712 {
713     const char *name;
714     MemoryRegion *mr;
715     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
716         mr = MEMORY_REGION(child);
717         if ((memory_region_is_ram(mr) ||
718             memory_region_is_ram_device(mr) ||
719             memory_region_is_rom(mr)) == false) {
720             name = object_get_canonical_path_component(child);
721             /*
722              * We don't want duplicate pointers to the same MemoryRegion, so
723              * try to remove copies of the pointer, before adding it.
724              */
725             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
726         }
727     }
728     return 0;
729 }
730 
731 static int locate_fuzz_objects(Object *child, void *opaque)
732 {
733     char *pattern = opaque;
734     if (g_pattern_match_simple(pattern, object_get_typename(child))) {
735         /* Find and save ptrs to any child MemoryRegions */
736         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
737 
738         /*
739          * We matched an object. If its a PCI device, store a pointer to it so
740          * we can map BARs and fuzz its config space.
741          */
742         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
743             /*
744              * Don't want duplicate pointers to the same PCIDevice, so remove
745              * copies of the pointer, before adding it.
746              */
747             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
748             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
749         }
750     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
751         if (g_pattern_match_simple(pattern,
752             object_get_canonical_path_component(child))) {
753             MemoryRegion *mr;
754             mr = MEMORY_REGION(child);
755             if ((memory_region_is_ram(mr) ||
756                  memory_region_is_ram_device(mr) ||
757                  memory_region_is_rom(mr)) == false) {
758                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
759             }
760         }
761     }
762     return 0;
763 }
764 
765 static void generic_pre_fuzz(QTestState *s)
766 {
767     GHashTableIter iter;
768     MemoryRegion *mr;
769     char **result;
770 
771     if (!getenv("QEMU_FUZZ_OBJECTS")) {
772         usage();
773     }
774     if (getenv("QTEST_LOG")) {
775         qtest_log_enabled = 1;
776     }
777     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
778         avoid_double_fetches = 1;
779     }
780     if (getenv("QEMU_FUZZ_TIMEOUT")) {
781         timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
782     }
783     qts_global = s;
784 
785     dma_regions = g_array_new(false, false, sizeof(address_range));
786     dma_patterns = g_array_new(false, false, sizeof(pattern));
787 
788     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
789     fuzzable_pci_devices   = g_ptr_array_new();
790 
791     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
792     for (int i = 0; result[i] != NULL; i++) {
793         printf("Matching objects by name %s\n", result[i]);
794         object_child_foreach_recursive(qdev_get_machine(),
795                                     locate_fuzz_objects,
796                                     result[i]);
797     }
798     g_strfreev(result);
799     printf("This process will try to fuzz the following MemoryRegions:\n");
800 
801     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
802     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
803         printf("  * %s (size %lx)\n",
804                object_get_canonical_path_component(&(mr->parent_obj)),
805                (uint64_t)mr->size);
806     }
807 
808     if (!g_hash_table_size(fuzzable_memoryregions)) {
809         printf("No fuzzable memory regions found...\n");
810         exit(1);
811     }
812 
813     counter_shm_init();
814 }
815 
816 /*
817  * When libfuzzer gives us two inputs to combine, return a new input with the
818  * following structure:
819  *
820  * Input 1 (data1)
821  * SEPARATOR
822  * Clear out the DMA Patterns
823  * SEPARATOR
824  * Disable the pci_read/write instructions
825  * SEPARATOR
826  * Input 2 (data2)
827  *
828  * The idea is to collate the core behaviors of the two inputs.
829  * For example:
830  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
831  *          device functionality A
832  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
833  *          functionality B
834  *
835  * This function attempts to produce an input that:
836  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
837  *          functionality A device, replaces the DMA patterns with a single
838  *          patten, and triggers device functionality B.
839  */
840 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
841                                      uint8_t *data2, size_t size2, uint8_t *out,
842                                      size_t max_out_size, unsigned int seed)
843 {
844     size_t copy_len = 0, size = 0;
845 
846     /* Check that we have enough space for data1 and at least part of data2 */
847     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
848         return 0;
849     }
850 
851     /* Copy_Len in the first input */
852     copy_len = size1;
853     memcpy(out + size, data1, copy_len);
854     size += copy_len;
855     max_out_size -= copy_len;
856 
857     /* Append a separator */
858     copy_len = strlen(SEPARATOR);
859     memcpy(out + size, SEPARATOR, copy_len);
860     size += copy_len;
861     max_out_size -= copy_len;
862 
863     /* Clear out the DMA Patterns */
864     copy_len = 1;
865     if (copy_len) {
866         out[size] = OP_CLEAR_DMA_PATTERNS;
867     }
868     size += copy_len;
869     max_out_size -= copy_len;
870 
871     /* Append a separator */
872     copy_len = strlen(SEPARATOR);
873     memcpy(out + size, SEPARATOR, copy_len);
874     size += copy_len;
875     max_out_size -= copy_len;
876 
877     /* Disable PCI ops. Assume data1 took care of setting up PCI */
878     copy_len = 1;
879     if (copy_len) {
880         out[size] = OP_DISABLE_PCI;
881     }
882     size += copy_len;
883     max_out_size -= copy_len;
884 
885     /* Append a separator */
886     copy_len = strlen(SEPARATOR);
887     memcpy(out + size, SEPARATOR, copy_len);
888     size += copy_len;
889     max_out_size -= copy_len;
890 
891     /* Copy_Len over the second input */
892     copy_len = MIN(size2, max_out_size);
893     memcpy(out + size, data2, copy_len);
894     size += copy_len;
895     max_out_size -= copy_len;
896 
897     return  size;
898 }
899 
900 
901 static GString *generic_fuzz_cmdline(FuzzTarget *t)
902 {
903     GString *cmd_line = g_string_new(TARGET_NAME);
904     if (!getenv("QEMU_FUZZ_ARGS")) {
905         usage();
906     }
907     g_string_append_printf(cmd_line, " -display none \
908                                       -machine accel=qtest, \
909                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
910     return cmd_line;
911 }
912 
913 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
914 {
915     const generic_fuzz_config *config;
916     g_assert(t->opaque);
917 
918     config = t->opaque;
919     setenv("QEMU_FUZZ_ARGS", config->args, 1);
920     setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
921     return generic_fuzz_cmdline(t);
922 }
923 
924 static void register_generic_fuzz_targets(void)
925 {
926     fuzz_add_target(&(FuzzTarget){
927             .name = "generic-fuzz",
928             .description = "Fuzz based on any qemu command-line args. ",
929             .get_init_cmdline = generic_fuzz_cmdline,
930             .pre_fuzz = generic_pre_fuzz,
931             .fuzz = generic_fuzz,
932             .crossover = generic_fuzz_crossover
933     });
934 
935     GString *name;
936     const generic_fuzz_config *config;
937 
938     for (int i = 0;
939          i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
940          i++) {
941         config = predefined_configs + i;
942         name = g_string_new("generic-fuzz");
943         g_string_append_printf(name, "-%s", config->name);
944         fuzz_add_target(&(FuzzTarget){
945                 .name = name->str,
946                 .description = "Predefined generic-fuzz config.",
947                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
948                 .pre_fuzz = generic_pre_fuzz,
949                 .fuzz = generic_fuzz,
950                 .crossover = generic_fuzz_crossover,
951                 .opaque = (void *)config
952         });
953     }
954 }
955 
956 fuzz_target_init(register_generic_fuzz_targets);
957