1 /* 2 * Generic Virtual-Device Fuzzing Target 3 * 4 * Copyright Red Hat Inc., 2020 5 * 6 * Authors: 7 * Alexander Bulekov <alxndr@bu.edu> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 15 #include <wordexp.h> 16 17 #include "hw/core/cpu.h" 18 #include "tests/qtest/libqtest.h" 19 #include "tests/qtest/libqos/pci-pc.h" 20 #include "fuzz.h" 21 #include "fork_fuzz.h" 22 #include "string.h" 23 #include "exec/memory.h" 24 #include "exec/ramblock.h" 25 #include "hw/qdev-core.h" 26 #include "hw/pci/pci.h" 27 #include "hw/boards.h" 28 #include "generic_fuzz_configs.h" 29 #include "hw/mem/sparse-mem.h" 30 31 /* 32 * SEPARATOR is used to separate "operations" in the fuzz input 33 */ 34 #define SEPARATOR "FUZZ" 35 36 enum cmds { 37 OP_IN, 38 OP_OUT, 39 OP_READ, 40 OP_WRITE, 41 OP_PCI_READ, 42 OP_PCI_WRITE, 43 OP_DISABLE_PCI, 44 OP_ADD_DMA_PATTERN, 45 OP_CLEAR_DMA_PATTERNS, 46 OP_CLOCK_STEP, 47 }; 48 49 #define DEFAULT_TIMEOUT_US 100000 50 #define USEC_IN_SEC 1000000000 51 52 #define MAX_DMA_FILL_SIZE 0x10000 53 54 #define PCI_HOST_BRIDGE_CFG 0xcf8 55 #define PCI_HOST_BRIDGE_DATA 0xcfc 56 57 typedef struct { 58 ram_addr_t addr; 59 ram_addr_t size; /* The number of bytes until the end of the I/O region */ 60 } address_range; 61 62 static useconds_t timeout = DEFAULT_TIMEOUT_US; 63 64 static bool qtest_log_enabled; 65 66 MemoryRegion *sparse_mem_mr; 67 68 /* 69 * A pattern used to populate a DMA region or perform a memwrite. This is 70 * useful for e.g. populating tables of unique addresses. 71 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"} 72 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ... 73 */ 74 typedef struct { 75 uint8_t index; /* Index of a byte to increment by stride */ 76 uint8_t stride; /* Increment each index'th byte by this amount */ 77 size_t len; 78 const uint8_t *data; 79 } pattern; 80 81 /* Avoid filling the same DMA region between MMIO/PIO commands ? */ 82 static bool avoid_double_fetches; 83 84 static QTestState *qts_global; /* Need a global for the DMA callback */ 85 86 /* 87 * List of memory regions that are children of QOM objects specified by the 88 * user for fuzzing. 89 */ 90 static GHashTable *fuzzable_memoryregions; 91 static GPtrArray *fuzzable_pci_devices; 92 93 struct get_io_cb_info { 94 int index; 95 int found; 96 address_range result; 97 }; 98 99 static bool get_io_address_cb(Int128 start, Int128 size, 100 const MemoryRegion *mr, 101 hwaddr offset_in_region, 102 void *opaque) 103 { 104 struct get_io_cb_info *info = opaque; 105 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) { 106 if (info->index == 0) { 107 info->result.addr = (ram_addr_t)start; 108 info->result.size = (ram_addr_t)size; 109 info->found = 1; 110 return true; 111 } 112 info->index--; 113 } 114 return false; 115 } 116 117 /* 118 * List of dma regions populated since the last fuzzing command. Used to ensure 119 * that we only write to each DMA address once, to avoid race conditions when 120 * building reproducers. 121 */ 122 static GArray *dma_regions; 123 124 static GArray *dma_patterns; 125 static int dma_pattern_index; 126 static bool pci_disabled; 127 128 /* 129 * Allocate a block of memory and populate it with a pattern. 130 */ 131 static void *pattern_alloc(pattern p, size_t len) 132 { 133 int i; 134 uint8_t *buf = g_malloc(len); 135 uint8_t sum = 0; 136 137 for (i = 0; i < len; ++i) { 138 buf[i] = p.data[i % p.len]; 139 if ((i % p.len) == p.index) { 140 buf[i] += sum; 141 sum += p.stride; 142 } 143 } 144 return buf; 145 } 146 147 static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 148 { 149 unsigned access_size_max = mr->ops->valid.max_access_size; 150 151 /* 152 * Regions are assumed to support 1-4 byte accesses unless 153 * otherwise specified. 154 */ 155 if (access_size_max == 0) { 156 access_size_max = 4; 157 } 158 159 /* Bound the maximum access by the alignment of the address. */ 160 if (!mr->ops->impl.unaligned) { 161 unsigned align_size_max = addr & -addr; 162 if (align_size_max != 0 && align_size_max < access_size_max) { 163 access_size_max = align_size_max; 164 } 165 } 166 167 /* Don't attempt accesses larger than the maximum. */ 168 if (l > access_size_max) { 169 l = access_size_max; 170 } 171 l = pow2floor(l); 172 173 return l; 174 } 175 176 /* 177 * Call-back for functions that perform DMA reads from guest memory. Confirm 178 * that the region has not already been populated since the last loop in 179 * generic_fuzz(), avoiding potential race-conditions, which we don't have 180 * a good way for reproducing right now. 181 */ 182 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr) 183 { 184 /* Are we in the generic-fuzzer or are we using another fuzz-target? */ 185 if (!qts_global) { 186 return; 187 } 188 189 /* 190 * Return immediately if: 191 * - We have no DMA patterns defined 192 * - The length of the DMA read request is zero 193 * - The DMA read is hitting an MR other than the machine's main RAM 194 * - The DMA request hits past the bounds of our RAM 195 */ 196 if (dma_patterns->len == 0 197 || len == 0 198 || (mr != current_machine->ram && mr != sparse_mem_mr)) { 199 return; 200 } 201 202 /* 203 * If we overlap with any existing dma_regions, split the range and only 204 * populate the non-overlapping parts. 205 */ 206 address_range region; 207 bool double_fetch = false; 208 for (int i = 0; 209 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled); 210 ++i) { 211 region = g_array_index(dma_regions, address_range, i); 212 if (addr < region.addr + region.size && addr + len > region.addr) { 213 double_fetch = true; 214 if (addr < region.addr 215 && avoid_double_fetches) { 216 fuzz_dma_read_cb(addr, region.addr - addr, mr); 217 } 218 if (addr + len > region.addr + region.size 219 && avoid_double_fetches) { 220 fuzz_dma_read_cb(region.addr + region.size, 221 addr + len - (region.addr + region.size), mr); 222 } 223 return; 224 } 225 } 226 227 /* Cap the length of the DMA access to something reasonable */ 228 len = MIN(len, MAX_DMA_FILL_SIZE); 229 230 address_range ar = {addr, len}; 231 g_array_append_val(dma_regions, ar); 232 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index); 233 void *buf_base = pattern_alloc(p, ar.size); 234 void *buf = buf_base; 235 hwaddr l, addr1; 236 MemoryRegion *mr1; 237 while (len > 0) { 238 l = len; 239 mr1 = address_space_translate(first_cpu->as, 240 addr, &addr1, &l, true, 241 MEMTXATTRS_UNSPECIFIED); 242 243 /* 244 * If mr1 isn't RAM, address_space_translate doesn't update l. Use 245 * fuzz_memory_access_size to identify the number of bytes that it 246 * is safe to write without accidentally writing to another 247 * MemoryRegion. 248 */ 249 if (!memory_region_is_ram(mr1)) { 250 l = fuzz_memory_access_size(mr1, l, addr1); 251 } 252 if (memory_region_is_ram(mr1) || 253 memory_region_is_romd(mr1) || 254 mr1 == sparse_mem_mr) { 255 /* ROM/RAM case */ 256 if (qtest_log_enabled) { 257 /* 258 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log 259 * that will be written by qtest.c with a DMA tag, so we can reorder 260 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO 261 * command. 262 */ 263 fprintf(stderr, "[DMA] "); 264 if (double_fetch) { 265 fprintf(stderr, "[DOUBLE-FETCH] "); 266 } 267 fflush(stderr); 268 } 269 qtest_memwrite(qts_global, addr, buf, l); 270 } 271 len -= l; 272 buf += l; 273 addr += l; 274 275 } 276 g_free(buf_base); 277 278 /* Increment the index of the pattern for the next DMA access */ 279 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len; 280 } 281 282 /* 283 * Here we want to convert a fuzzer-provided [io-region-index, offset] to 284 * a physical address. To do this, we iterate over all of the matched 285 * MemoryRegions. Check whether each region exists within the particular io 286 * space. Return the absolute address of the offset within the index'th region 287 * that is a subregion of the io_space and the distance until the end of the 288 * memory region. 289 */ 290 static bool get_io_address(address_range *result, AddressSpace *as, 291 uint8_t index, 292 uint32_t offset) { 293 FlatView *view; 294 view = as->current_map; 295 g_assert(view); 296 struct get_io_cb_info cb_info = {}; 297 298 cb_info.index = index; 299 300 /* 301 * Loop around the FlatView until we match "index" number of 302 * fuzzable_memoryregions, or until we know that there are no matching 303 * memory_regions. 304 */ 305 do { 306 flatview_for_each_range(view, get_io_address_cb , &cb_info); 307 } while (cb_info.index != index && !cb_info.found); 308 309 *result = cb_info.result; 310 if (result->size) { 311 offset = offset % result->size; 312 result->addr += offset; 313 result->size -= offset; 314 } 315 return cb_info.found; 316 } 317 318 static bool get_pio_address(address_range *result, 319 uint8_t index, uint16_t offset) 320 { 321 /* 322 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result 323 * can contain an addr that extends past the PIO space. When we pass this 324 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end 325 * up fuzzing a completely different MemoryRegion/Device. Therefore, check 326 * that the address here is within the PIO space limits. 327 */ 328 bool found = get_io_address(result, &address_space_io, index, offset); 329 return result->addr <= 0xFFFF ? found : false; 330 } 331 332 static bool get_mmio_address(address_range *result, 333 uint8_t index, uint32_t offset) 334 { 335 return get_io_address(result, &address_space_memory, index, offset); 336 } 337 338 static void op_in(QTestState *s, const unsigned char * data, size_t len) 339 { 340 enum Sizes {Byte, Word, Long, end_sizes}; 341 struct { 342 uint8_t size; 343 uint8_t base; 344 uint16_t offset; 345 } a; 346 address_range abs; 347 348 if (len < sizeof(a)) { 349 return; 350 } 351 memcpy(&a, data, sizeof(a)); 352 if (get_pio_address(&abs, a.base, a.offset) == 0) { 353 return; 354 } 355 356 switch (a.size %= end_sizes) { 357 case Byte: 358 qtest_inb(s, abs.addr); 359 break; 360 case Word: 361 if (abs.size >= 2) { 362 qtest_inw(s, abs.addr); 363 } 364 break; 365 case Long: 366 if (abs.size >= 4) { 367 qtest_inl(s, abs.addr); 368 } 369 break; 370 } 371 } 372 373 static void op_out(QTestState *s, const unsigned char * data, size_t len) 374 { 375 enum Sizes {Byte, Word, Long, end_sizes}; 376 struct { 377 uint8_t size; 378 uint8_t base; 379 uint16_t offset; 380 uint32_t value; 381 } a; 382 address_range abs; 383 384 if (len < sizeof(a)) { 385 return; 386 } 387 memcpy(&a, data, sizeof(a)); 388 389 if (get_pio_address(&abs, a.base, a.offset) == 0) { 390 return; 391 } 392 393 switch (a.size %= end_sizes) { 394 case Byte: 395 qtest_outb(s, abs.addr, a.value & 0xFF); 396 break; 397 case Word: 398 if (abs.size >= 2) { 399 qtest_outw(s, abs.addr, a.value & 0xFFFF); 400 } 401 break; 402 case Long: 403 if (abs.size >= 4) { 404 qtest_outl(s, abs.addr, a.value); 405 } 406 break; 407 } 408 } 409 410 static void op_read(QTestState *s, const unsigned char * data, size_t len) 411 { 412 enum Sizes {Byte, Word, Long, Quad, end_sizes}; 413 struct { 414 uint8_t size; 415 uint8_t base; 416 uint32_t offset; 417 } a; 418 address_range abs; 419 420 if (len < sizeof(a)) { 421 return; 422 } 423 memcpy(&a, data, sizeof(a)); 424 425 if (get_mmio_address(&abs, a.base, a.offset) == 0) { 426 return; 427 } 428 429 switch (a.size %= end_sizes) { 430 case Byte: 431 qtest_readb(s, abs.addr); 432 break; 433 case Word: 434 if (abs.size >= 2) { 435 qtest_readw(s, abs.addr); 436 } 437 break; 438 case Long: 439 if (abs.size >= 4) { 440 qtest_readl(s, abs.addr); 441 } 442 break; 443 case Quad: 444 if (abs.size >= 8) { 445 qtest_readq(s, abs.addr); 446 } 447 break; 448 } 449 } 450 451 static void op_write(QTestState *s, const unsigned char * data, size_t len) 452 { 453 enum Sizes {Byte, Word, Long, Quad, end_sizes}; 454 struct { 455 uint8_t size; 456 uint8_t base; 457 uint32_t offset; 458 uint64_t value; 459 } a; 460 address_range abs; 461 462 if (len < sizeof(a)) { 463 return; 464 } 465 memcpy(&a, data, sizeof(a)); 466 467 if (get_mmio_address(&abs, a.base, a.offset) == 0) { 468 return; 469 } 470 471 switch (a.size %= end_sizes) { 472 case Byte: 473 qtest_writeb(s, abs.addr, a.value & 0xFF); 474 break; 475 case Word: 476 if (abs.size >= 2) { 477 qtest_writew(s, abs.addr, a.value & 0xFFFF); 478 } 479 break; 480 case Long: 481 if (abs.size >= 4) { 482 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF); 483 } 484 break; 485 case Quad: 486 if (abs.size >= 8) { 487 qtest_writeq(s, abs.addr, a.value); 488 } 489 break; 490 } 491 } 492 493 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len) 494 { 495 enum Sizes {Byte, Word, Long, end_sizes}; 496 struct { 497 uint8_t size; 498 uint8_t base; 499 uint8_t offset; 500 } a; 501 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { 502 return; 503 } 504 memcpy(&a, data, sizeof(a)); 505 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, 506 a.base % fuzzable_pci_devices->len); 507 int devfn = dev->devfn; 508 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); 509 switch (a.size %= end_sizes) { 510 case Byte: 511 qtest_inb(s, PCI_HOST_BRIDGE_DATA); 512 break; 513 case Word: 514 qtest_inw(s, PCI_HOST_BRIDGE_DATA); 515 break; 516 case Long: 517 qtest_inl(s, PCI_HOST_BRIDGE_DATA); 518 break; 519 } 520 } 521 522 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len) 523 { 524 enum Sizes {Byte, Word, Long, end_sizes}; 525 struct { 526 uint8_t size; 527 uint8_t base; 528 uint8_t offset; 529 uint32_t value; 530 } a; 531 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { 532 return; 533 } 534 memcpy(&a, data, sizeof(a)); 535 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, 536 a.base % fuzzable_pci_devices->len); 537 int devfn = dev->devfn; 538 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); 539 switch (a.size %= end_sizes) { 540 case Byte: 541 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF); 542 break; 543 case Word: 544 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF); 545 break; 546 case Long: 547 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF); 548 break; 549 } 550 } 551 552 static void op_add_dma_pattern(QTestState *s, 553 const unsigned char *data, size_t len) 554 { 555 struct { 556 /* 557 * index and stride can be used to increment the index-th byte of the 558 * pattern by the value stride, for each loop of the pattern. 559 */ 560 uint8_t index; 561 uint8_t stride; 562 } a; 563 564 if (len < sizeof(a) + 1) { 565 return; 566 } 567 memcpy(&a, data, sizeof(a)); 568 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)}; 569 p.index = a.index % p.len; 570 g_array_append_val(dma_patterns, p); 571 return; 572 } 573 574 static void op_clear_dma_patterns(QTestState *s, 575 const unsigned char *data, size_t len) 576 { 577 g_array_set_size(dma_patterns, 0); 578 dma_pattern_index = 0; 579 } 580 581 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len) 582 { 583 qtest_clock_step_next(s); 584 } 585 586 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len) 587 { 588 pci_disabled = true; 589 } 590 591 static void handle_timeout(int sig) 592 { 593 if (qtest_log_enabled) { 594 fprintf(stderr, "[Timeout]\n"); 595 fflush(stderr); 596 } 597 598 /* 599 * If there is a crash, libfuzzer/ASAN forks a child to run an 600 * "llvm-symbolizer" process for printing out a pretty stacktrace. It 601 * communicates with this child using a pipe. If we timeout+Exit, while 602 * libfuzzer is still communicating with the llvm-symbolizer child, we will 603 * be left with an orphan llvm-symbolizer process. Sometimes, this appears 604 * to lead to a deadlock in the forkserver. Use waitpid to check if there 605 * are any waitable children. If so, exit out of the signal-handler, and 606 * let libfuzzer finish communicating with the child, and exit, on its own. 607 */ 608 if (waitpid(-1, NULL, WNOHANG) == 0) { 609 return; 610 } 611 612 _Exit(0); 613 } 614 615 /* 616 * Here, we interpret random bytes from the fuzzer, as a sequence of commands. 617 * Some commands can be variable-width, so we use a separator, SEPARATOR, to 618 * specify the boundaries between commands. SEPARATOR is used to separate 619 * "operations" in the fuzz input. Why use a separator, instead of just using 620 * the operations' length to identify operation boundaries? 621 * 1. This is a simple way to support variable-length operations 622 * 2. This adds "stability" to the input. 623 * For example take the input "AbBcgDefg", where there is no separator and 624 * Opcodes are capitalized. 625 * Simply, by removing the first byte, we end up with a very different 626 * sequence: 627 * BbcGdefg... 628 * By adding a separator, we avoid this problem: 629 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg 630 * Since B uses two additional bytes as operands, the first "B" will be 631 * ignored. The fuzzer actively tries to reduce inputs, so such unused 632 * bytes are likely to be pruned, eventually. 633 * 634 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally, 635 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's 636 * -dict), though this should not be necessary. 637 * 638 * As a result, the stream of bytes is converted into a sequence of commands. 639 * In a simplified example where SEPARATOR is 0xFF: 640 * 00 01 02 FF 03 04 05 06 FF 01 FF ... 641 * becomes this sequence of commands: 642 * 00 01 02 -> op00 (0102) -> in (0102, 2) 643 * 03 04 05 06 -> op03 (040506) -> write (040506, 3) 644 * 01 -> op01 (-,0) -> out (-,0) 645 * ... 646 * 647 * Note here that it is the job of the individual opcode functions to check 648 * that enough data was provided. I.e. in the last command out (,0), out needs 649 * to check that there is not enough data provided to select an address/value 650 * for the operation. 651 */ 652 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size) 653 { 654 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = { 655 [OP_IN] = op_in, 656 [OP_OUT] = op_out, 657 [OP_READ] = op_read, 658 [OP_WRITE] = op_write, 659 [OP_PCI_READ] = op_pci_read, 660 [OP_PCI_WRITE] = op_pci_write, 661 [OP_DISABLE_PCI] = op_disable_pci, 662 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern, 663 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns, 664 [OP_CLOCK_STEP] = op_clock_step, 665 }; 666 const unsigned char *cmd = Data; 667 const unsigned char *nextcmd; 668 size_t cmd_len; 669 uint8_t op; 670 671 if (fork() == 0) { 672 struct sigaction sact; 673 struct itimerval timer; 674 sigset_t set; 675 /* 676 * Sometimes the fuzzer will find inputs that take quite a long time to 677 * process. Often times, these inputs do not result in new coverage. 678 * Even if these inputs might be interesting, they can slow down the 679 * fuzzer, overall. Set a timeout for each command to avoid hurting 680 * performance, too much 681 */ 682 if (timeout) { 683 684 sigemptyset(&sact.sa_mask); 685 sact.sa_flags = SA_NODEFER; 686 sact.sa_handler = handle_timeout; 687 sigaction(SIGALRM, &sact, NULL); 688 689 sigemptyset(&set); 690 sigaddset(&set, SIGALRM); 691 pthread_sigmask(SIG_UNBLOCK, &set, NULL); 692 693 memset(&timer, 0, sizeof(timer)); 694 timer.it_value.tv_sec = timeout / USEC_IN_SEC; 695 timer.it_value.tv_usec = timeout % USEC_IN_SEC; 696 } 697 698 op_clear_dma_patterns(s, NULL, 0); 699 pci_disabled = false; 700 701 while (cmd && Size) { 702 /* Reset the timeout, each time we run a new command */ 703 if (timeout) { 704 setitimer(ITIMER_REAL, &timer, NULL); 705 } 706 707 /* Get the length until the next command or end of input */ 708 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR)); 709 cmd_len = nextcmd ? nextcmd - cmd : Size; 710 711 if (cmd_len > 0) { 712 /* Interpret the first byte of the command as an opcode */ 713 op = *cmd % (sizeof(ops) / sizeof((ops)[0])); 714 ops[op](s, cmd + 1, cmd_len - 1); 715 716 /* Run the main loop */ 717 flush_events(s); 718 } 719 /* Advance to the next command */ 720 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd; 721 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1); 722 g_array_set_size(dma_regions, 0); 723 } 724 _Exit(0); 725 } else { 726 flush_events(s); 727 wait(0); 728 } 729 } 730 731 static void usage(void) 732 { 733 printf("Please specify the following environment variables:\n"); 734 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n"); 735 printf("QEMU_FUZZ_OBJECTS= " 736 "a space separated list of QOM type names for objects to fuzz\n"); 737 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= " 738 "Try to avoid racy DMA double fetch bugs? %d by default\n", 739 avoid_double_fetches); 740 printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). " 741 "0 to disable. %d by default\n", timeout); 742 exit(0); 743 } 744 745 static int locate_fuzz_memory_regions(Object *child, void *opaque) 746 { 747 MemoryRegion *mr; 748 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) { 749 mr = MEMORY_REGION(child); 750 if ((memory_region_is_ram(mr) || 751 memory_region_is_ram_device(mr) || 752 memory_region_is_rom(mr)) == false) { 753 /* 754 * We don't want duplicate pointers to the same MemoryRegion, so 755 * try to remove copies of the pointer, before adding it. 756 */ 757 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); 758 } 759 } 760 return 0; 761 } 762 763 static int locate_fuzz_objects(Object *child, void *opaque) 764 { 765 GString *type_name; 766 GString *path_name; 767 char *pattern = opaque; 768 769 type_name = g_string_new(object_get_typename(child)); 770 g_string_ascii_down(type_name); 771 if (g_pattern_match_simple(pattern, type_name->str)) { 772 /* Find and save ptrs to any child MemoryRegions */ 773 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL); 774 775 /* 776 * We matched an object. If its a PCI device, store a pointer to it so 777 * we can map BARs and fuzz its config space. 778 */ 779 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) { 780 /* 781 * Don't want duplicate pointers to the same PCIDevice, so remove 782 * copies of the pointer, before adding it. 783 */ 784 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child)); 785 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child)); 786 } 787 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) { 788 path_name = g_string_new(object_get_canonical_path_component(child)); 789 g_string_ascii_down(path_name); 790 if (g_pattern_match_simple(pattern, path_name->str)) { 791 MemoryRegion *mr; 792 mr = MEMORY_REGION(child); 793 if ((memory_region_is_ram(mr) || 794 memory_region_is_ram_device(mr) || 795 memory_region_is_rom(mr)) == false) { 796 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); 797 } 798 } 799 g_string_free(path_name, true); 800 } 801 g_string_free(type_name, true); 802 return 0; 803 } 804 805 806 static void pci_enum(gpointer pcidev, gpointer bus) 807 { 808 PCIDevice *dev = pcidev; 809 QPCIDevice *qdev; 810 int i; 811 812 qdev = qpci_device_find(bus, dev->devfn); 813 g_assert(qdev != NULL); 814 for (i = 0; i < 6; i++) { 815 if (dev->io_regions[i].size) { 816 qpci_iomap(qdev, i, NULL); 817 } 818 } 819 qpci_device_enable(qdev); 820 g_free(qdev); 821 } 822 823 static void generic_pre_fuzz(QTestState *s) 824 { 825 GHashTableIter iter; 826 MemoryRegion *mr; 827 QPCIBus *pcibus; 828 char **result; 829 GString *name_pattern; 830 831 if (!getenv("QEMU_FUZZ_OBJECTS")) { 832 usage(); 833 } 834 if (getenv("QTEST_LOG")) { 835 qtest_log_enabled = 1; 836 } 837 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) { 838 avoid_double_fetches = 1; 839 } 840 if (getenv("QEMU_FUZZ_TIMEOUT")) { 841 timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0); 842 } 843 qts_global = s; 844 845 /* 846 * Create a special device that we can use to back DMA buffers at very 847 * high memory addresses 848 */ 849 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX); 850 851 dma_regions = g_array_new(false, false, sizeof(address_range)); 852 dma_patterns = g_array_new(false, false, sizeof(pattern)); 853 854 fuzzable_memoryregions = g_hash_table_new(NULL, NULL); 855 fuzzable_pci_devices = g_ptr_array_new(); 856 857 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1); 858 for (int i = 0; result[i] != NULL; i++) { 859 name_pattern = g_string_new(result[i]); 860 /* 861 * Make the pattern lowercase. We do the same for all the MemoryRegion 862 * and Type names so the configs are case-insensitive. 863 */ 864 g_string_ascii_down(name_pattern); 865 printf("Matching objects by name %s\n", result[i]); 866 object_child_foreach_recursive(qdev_get_machine(), 867 locate_fuzz_objects, 868 name_pattern->str); 869 g_string_free(name_pattern, true); 870 } 871 g_strfreev(result); 872 printf("This process will try to fuzz the following MemoryRegions:\n"); 873 874 g_hash_table_iter_init(&iter, fuzzable_memoryregions); 875 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) { 876 printf(" * %s (size 0x%" PRIx64 ")\n", 877 object_get_canonical_path_component(&(mr->parent_obj)), 878 memory_region_size(mr)); 879 } 880 881 if (!g_hash_table_size(fuzzable_memoryregions)) { 882 printf("No fuzzable memory regions found...\n"); 883 exit(1); 884 } 885 886 pcibus = qpci_new_pc(s, NULL); 887 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus); 888 qpci_free_pc(pcibus); 889 890 counter_shm_init(); 891 } 892 893 /* 894 * When libfuzzer gives us two inputs to combine, return a new input with the 895 * following structure: 896 * 897 * Input 1 (data1) 898 * SEPARATOR 899 * Clear out the DMA Patterns 900 * SEPARATOR 901 * Disable the pci_read/write instructions 902 * SEPARATOR 903 * Input 2 (data2) 904 * 905 * The idea is to collate the core behaviors of the two inputs. 906 * For example: 907 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers 908 * device functionality A 909 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device 910 * functionality B 911 * 912 * This function attempts to produce an input that: 913 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers 914 * functionality A device, replaces the DMA patterns with a single 915 * patten, and triggers device functionality B. 916 */ 917 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const 918 uint8_t *data2, size_t size2, uint8_t *out, 919 size_t max_out_size, unsigned int seed) 920 { 921 size_t copy_len = 0, size = 0; 922 923 /* Check that we have enough space for data1 and at least part of data2 */ 924 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) { 925 return 0; 926 } 927 928 /* Copy_Len in the first input */ 929 copy_len = size1; 930 memcpy(out + size, data1, copy_len); 931 size += copy_len; 932 max_out_size -= copy_len; 933 934 /* Append a separator */ 935 copy_len = strlen(SEPARATOR); 936 memcpy(out + size, SEPARATOR, copy_len); 937 size += copy_len; 938 max_out_size -= copy_len; 939 940 /* Clear out the DMA Patterns */ 941 copy_len = 1; 942 if (copy_len) { 943 out[size] = OP_CLEAR_DMA_PATTERNS; 944 } 945 size += copy_len; 946 max_out_size -= copy_len; 947 948 /* Append a separator */ 949 copy_len = strlen(SEPARATOR); 950 memcpy(out + size, SEPARATOR, copy_len); 951 size += copy_len; 952 max_out_size -= copy_len; 953 954 /* Disable PCI ops. Assume data1 took care of setting up PCI */ 955 copy_len = 1; 956 if (copy_len) { 957 out[size] = OP_DISABLE_PCI; 958 } 959 size += copy_len; 960 max_out_size -= copy_len; 961 962 /* Append a separator */ 963 copy_len = strlen(SEPARATOR); 964 memcpy(out + size, SEPARATOR, copy_len); 965 size += copy_len; 966 max_out_size -= copy_len; 967 968 /* Copy_Len over the second input */ 969 copy_len = MIN(size2, max_out_size); 970 memcpy(out + size, data2, copy_len); 971 size += copy_len; 972 max_out_size -= copy_len; 973 974 return size; 975 } 976 977 978 static GString *generic_fuzz_cmdline(FuzzTarget *t) 979 { 980 GString *cmd_line = g_string_new(TARGET_NAME); 981 if (!getenv("QEMU_FUZZ_ARGS")) { 982 usage(); 983 } 984 g_string_append_printf(cmd_line, " -display none \ 985 -machine accel=qtest, \ 986 -m 512M %s ", getenv("QEMU_FUZZ_ARGS")); 987 return cmd_line; 988 } 989 990 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t) 991 { 992 gchar *args; 993 const generic_fuzz_config *config; 994 g_assert(t->opaque); 995 996 config = t->opaque; 997 g_setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1); 998 if (config->argfunc) { 999 args = config->argfunc(); 1000 g_setenv("QEMU_FUZZ_ARGS", args, 1); 1001 g_free(args); 1002 } else { 1003 g_assert_nonnull(config->args); 1004 g_setenv("QEMU_FUZZ_ARGS", config->args, 1); 1005 } 1006 g_setenv("QEMU_FUZZ_OBJECTS", config->objects, 1); 1007 return generic_fuzz_cmdline(t); 1008 } 1009 1010 static void register_generic_fuzz_targets(void) 1011 { 1012 fuzz_add_target(&(FuzzTarget){ 1013 .name = "generic-fuzz", 1014 .description = "Fuzz based on any qemu command-line args. ", 1015 .get_init_cmdline = generic_fuzz_cmdline, 1016 .pre_fuzz = generic_pre_fuzz, 1017 .fuzz = generic_fuzz, 1018 .crossover = generic_fuzz_crossover 1019 }); 1020 1021 GString *name; 1022 const generic_fuzz_config *config; 1023 1024 for (int i = 0; 1025 i < sizeof(predefined_configs) / sizeof(generic_fuzz_config); 1026 i++) { 1027 config = predefined_configs + i; 1028 name = g_string_new("generic-fuzz"); 1029 g_string_append_printf(name, "-%s", config->name); 1030 fuzz_add_target(&(FuzzTarget){ 1031 .name = name->str, 1032 .description = "Predefined generic-fuzz config.", 1033 .get_init_cmdline = generic_fuzz_predefined_config_cmdline, 1034 .pre_fuzz = generic_pre_fuzz, 1035 .fuzz = generic_fuzz, 1036 .crossover = generic_fuzz_crossover, 1037 .opaque = (void *)config 1038 }); 1039 } 1040 } 1041 1042 fuzz_target_init(register_generic_fuzz_targets); 1043