xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision efee71c8)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "string.h"
23 #include "exec/memory.h"
24 #include "exec/ramblock.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "hw/boards.h"
28 #include "generic_fuzz_configs.h"
29 #include "hw/mem/sparse-mem.h"
30 
31 /*
32  * SEPARATOR is used to separate "operations" in the fuzz input
33  */
34 #define SEPARATOR "FUZZ"
35 
36 enum cmds {
37     OP_IN,
38     OP_OUT,
39     OP_READ,
40     OP_WRITE,
41     OP_PCI_READ,
42     OP_PCI_WRITE,
43     OP_DISABLE_PCI,
44     OP_ADD_DMA_PATTERN,
45     OP_CLEAR_DMA_PATTERNS,
46     OP_CLOCK_STEP,
47 };
48 
49 #define DEFAULT_TIMEOUT_US 100000
50 #define USEC_IN_SEC 1000000000
51 
52 #define MAX_DMA_FILL_SIZE 0x10000
53 
54 #define PCI_HOST_BRIDGE_CFG 0xcf8
55 #define PCI_HOST_BRIDGE_DATA 0xcfc
56 
57 typedef struct {
58     ram_addr_t addr;
59     ram_addr_t size; /* The number of bytes until the end of the I/O region */
60 } address_range;
61 
62 static useconds_t timeout = DEFAULT_TIMEOUT_US;
63 
64 static bool qtest_log_enabled;
65 
66 MemoryRegion *sparse_mem_mr;
67 
68 /*
69  * A pattern used to populate a DMA region or perform a memwrite. This is
70  * useful for e.g. populating tables of unique addresses.
71  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
72  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
73  */
74 typedef struct {
75     uint8_t index;      /* Index of a byte to increment by stride */
76     uint8_t stride;     /* Increment each index'th byte by this amount */
77     size_t len;
78     const uint8_t *data;
79 } pattern;
80 
81 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
82 static bool avoid_double_fetches;
83 
84 static QTestState *qts_global; /* Need a global for the DMA callback */
85 
86 /*
87  * List of memory regions that are children of QOM objects specified by the
88  * user for fuzzing.
89  */
90 static GHashTable *fuzzable_memoryregions;
91 static GPtrArray *fuzzable_pci_devices;
92 
93 struct get_io_cb_info {
94     int index;
95     int found;
96     address_range result;
97 };
98 
99 static bool get_io_address_cb(Int128 start, Int128 size,
100                               const MemoryRegion *mr,
101                               hwaddr offset_in_region,
102                               void *opaque)
103 {
104     struct get_io_cb_info *info = opaque;
105     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
106         if (info->index == 0) {
107             info->result.addr = (ram_addr_t)start;
108             info->result.size = (ram_addr_t)size;
109             info->found = 1;
110             return true;
111         }
112         info->index--;
113     }
114     return false;
115 }
116 
117 /*
118  * List of dma regions populated since the last fuzzing command. Used to ensure
119  * that we only write to each DMA address once, to avoid race conditions when
120  * building reproducers.
121  */
122 static GArray *dma_regions;
123 
124 static GArray *dma_patterns;
125 static int dma_pattern_index;
126 static bool pci_disabled;
127 
128 /*
129  * Allocate a block of memory and populate it with a pattern.
130  */
131 static void *pattern_alloc(pattern p, size_t len)
132 {
133     int i;
134     uint8_t *buf = g_malloc(len);
135     uint8_t sum = 0;
136 
137     for (i = 0; i < len; ++i) {
138         buf[i] = p.data[i % p.len];
139         if ((i % p.len) == p.index) {
140             buf[i] += sum;
141             sum += p.stride;
142         }
143     }
144     return buf;
145 }
146 
147 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
148 {
149     unsigned access_size_max = mr->ops->valid.max_access_size;
150 
151     /*
152      * Regions are assumed to support 1-4 byte accesses unless
153      * otherwise specified.
154      */
155     if (access_size_max == 0) {
156         access_size_max = 4;
157     }
158 
159     /* Bound the maximum access by the alignment of the address.  */
160     if (!mr->ops->impl.unaligned) {
161         unsigned align_size_max = addr & -addr;
162         if (align_size_max != 0 && align_size_max < access_size_max) {
163             access_size_max = align_size_max;
164         }
165     }
166 
167     /* Don't attempt accesses larger than the maximum.  */
168     if (l > access_size_max) {
169         l = access_size_max;
170     }
171     l = pow2floor(l);
172 
173     return l;
174 }
175 
176 /*
177  * Call-back for functions that perform DMA reads from guest memory. Confirm
178  * that the region has not already been populated since the last loop in
179  * generic_fuzz(), avoiding potential race-conditions, which we don't have
180  * a good way for reproducing right now.
181  */
182 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
183 {
184     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
185     if (!qts_global) {
186         return;
187     }
188 
189     /*
190      * Return immediately if:
191      * - We have no DMA patterns defined
192      * - The length of the DMA read request is zero
193      * - The DMA read is hitting an MR other than the machine's main RAM
194      * - The DMA request hits past the bounds of our RAM
195      */
196     if (dma_patterns->len == 0
197         || len == 0
198         || (mr != current_machine->ram && mr != sparse_mem_mr)) {
199         return;
200     }
201 
202     /*
203      * If we overlap with any existing dma_regions, split the range and only
204      * populate the non-overlapping parts.
205      */
206     address_range region;
207     bool double_fetch = false;
208     for (int i = 0;
209          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
210          ++i) {
211         region = g_array_index(dma_regions, address_range, i);
212         if (addr < region.addr + region.size && addr + len > region.addr) {
213             double_fetch = true;
214             if (addr < region.addr
215                 && avoid_double_fetches) {
216                 fuzz_dma_read_cb(addr, region.addr - addr, mr);
217             }
218             if (addr + len > region.addr + region.size
219                 && avoid_double_fetches) {
220                 fuzz_dma_read_cb(region.addr + region.size,
221                         addr + len - (region.addr + region.size), mr);
222             }
223             return;
224         }
225     }
226 
227     /* Cap the length of the DMA access to something reasonable */
228     len = MIN(len, MAX_DMA_FILL_SIZE);
229 
230     address_range ar = {addr, len};
231     g_array_append_val(dma_regions, ar);
232     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
233     void *buf_base = pattern_alloc(p, ar.size);
234     void *buf = buf_base;
235     hwaddr l, addr1;
236     MemoryRegion *mr1;
237     while (len > 0) {
238         l = len;
239         mr1 = address_space_translate(first_cpu->as,
240                                       addr, &addr1, &l, true,
241                                       MEMTXATTRS_UNSPECIFIED);
242 
243         /*
244          *  If mr1 isn't RAM, address_space_translate doesn't update l. Use
245          *  memory_access_size to identify the number of bytes that it is safe
246          *  to write without accidentally writing to another MemoryRegion.
247          */
248         if (!memory_region_is_ram(mr1)) {
249             l = memory_access_size(mr1, l, addr1);
250         }
251         if (memory_region_is_ram(mr1) ||
252             memory_region_is_romd(mr1) ||
253             mr1 == sparse_mem_mr) {
254             /* ROM/RAM case */
255             if (qtest_log_enabled) {
256                 /*
257                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
258                 * that will be written by qtest.c with a DMA tag, so we can reorder
259                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
260                 * command.
261                 */
262                 fprintf(stderr, "[DMA] ");
263                 if (double_fetch) {
264                     fprintf(stderr, "[DOUBLE-FETCH] ");
265                 }
266                 fflush(stderr);
267             }
268             qtest_memwrite(qts_global, addr, buf, l);
269         }
270         len -= l;
271         buf += l;
272         addr += l;
273 
274     }
275     g_free(buf_base);
276 
277     /* Increment the index of the pattern for the next DMA access */
278     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
279 }
280 
281 /*
282  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
283  * a physical address. To do this, we iterate over all of the matched
284  * MemoryRegions. Check whether each region exists within the particular io
285  * space. Return the absolute address of the offset within the index'th region
286  * that is a subregion of the io_space and the distance until the end of the
287  * memory region.
288  */
289 static bool get_io_address(address_range *result, AddressSpace *as,
290                             uint8_t index,
291                             uint32_t offset) {
292     FlatView *view;
293     view = as->current_map;
294     g_assert(view);
295     struct get_io_cb_info cb_info = {};
296 
297     cb_info.index = index;
298 
299     /*
300      * Loop around the FlatView until we match "index" number of
301      * fuzzable_memoryregions, or until we know that there are no matching
302      * memory_regions.
303      */
304     do {
305         flatview_for_each_range(view, get_io_address_cb , &cb_info);
306     } while (cb_info.index != index && !cb_info.found);
307 
308     *result = cb_info.result;
309     if (result->size) {
310         offset = offset % result->size;
311         result->addr += offset;
312         result->size -= offset;
313     }
314     return cb_info.found;
315 }
316 
317 static bool get_pio_address(address_range *result,
318                             uint8_t index, uint16_t offset)
319 {
320     /*
321      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
322      * can contain an addr that extends past the PIO space. When we pass this
323      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
324      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
325      * that the address here is within the PIO space limits.
326      */
327     bool found = get_io_address(result, &address_space_io, index, offset);
328     return result->addr <= 0xFFFF ? found : false;
329 }
330 
331 static bool get_mmio_address(address_range *result,
332                              uint8_t index, uint32_t offset)
333 {
334     return get_io_address(result, &address_space_memory, index, offset);
335 }
336 
337 static void op_in(QTestState *s, const unsigned char * data, size_t len)
338 {
339     enum Sizes {Byte, Word, Long, end_sizes};
340     struct {
341         uint8_t size;
342         uint8_t base;
343         uint16_t offset;
344     } a;
345     address_range abs;
346 
347     if (len < sizeof(a)) {
348         return;
349     }
350     memcpy(&a, data, sizeof(a));
351     if (get_pio_address(&abs, a.base, a.offset) == 0) {
352         return;
353     }
354 
355     switch (a.size %= end_sizes) {
356     case Byte:
357         qtest_inb(s, abs.addr);
358         break;
359     case Word:
360         if (abs.size >= 2) {
361             qtest_inw(s, abs.addr);
362         }
363         break;
364     case Long:
365         if (abs.size >= 4) {
366             qtest_inl(s, abs.addr);
367         }
368         break;
369     }
370 }
371 
372 static void op_out(QTestState *s, const unsigned char * data, size_t len)
373 {
374     enum Sizes {Byte, Word, Long, end_sizes};
375     struct {
376         uint8_t size;
377         uint8_t base;
378         uint16_t offset;
379         uint32_t value;
380     } a;
381     address_range abs;
382 
383     if (len < sizeof(a)) {
384         return;
385     }
386     memcpy(&a, data, sizeof(a));
387 
388     if (get_pio_address(&abs, a.base, a.offset) == 0) {
389         return;
390     }
391 
392     switch (a.size %= end_sizes) {
393     case Byte:
394         qtest_outb(s, abs.addr, a.value & 0xFF);
395         break;
396     case Word:
397         if (abs.size >= 2) {
398             qtest_outw(s, abs.addr, a.value & 0xFFFF);
399         }
400         break;
401     case Long:
402         if (abs.size >= 4) {
403             qtest_outl(s, abs.addr, a.value);
404         }
405         break;
406     }
407 }
408 
409 static void op_read(QTestState *s, const unsigned char * data, size_t len)
410 {
411     enum Sizes {Byte, Word, Long, Quad, end_sizes};
412     struct {
413         uint8_t size;
414         uint8_t base;
415         uint32_t offset;
416     } a;
417     address_range abs;
418 
419     if (len < sizeof(a)) {
420         return;
421     }
422     memcpy(&a, data, sizeof(a));
423 
424     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
425         return;
426     }
427 
428     switch (a.size %= end_sizes) {
429     case Byte:
430         qtest_readb(s, abs.addr);
431         break;
432     case Word:
433         if (abs.size >= 2) {
434             qtest_readw(s, abs.addr);
435         }
436         break;
437     case Long:
438         if (abs.size >= 4) {
439             qtest_readl(s, abs.addr);
440         }
441         break;
442     case Quad:
443         if (abs.size >= 8) {
444             qtest_readq(s, abs.addr);
445         }
446         break;
447     }
448 }
449 
450 static void op_write(QTestState *s, const unsigned char * data, size_t len)
451 {
452     enum Sizes {Byte, Word, Long, Quad, end_sizes};
453     struct {
454         uint8_t size;
455         uint8_t base;
456         uint32_t offset;
457         uint64_t value;
458     } a;
459     address_range abs;
460 
461     if (len < sizeof(a)) {
462         return;
463     }
464     memcpy(&a, data, sizeof(a));
465 
466     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
467         return;
468     }
469 
470     switch (a.size %= end_sizes) {
471     case Byte:
472             qtest_writeb(s, abs.addr, a.value & 0xFF);
473         break;
474     case Word:
475         if (abs.size >= 2) {
476             qtest_writew(s, abs.addr, a.value & 0xFFFF);
477         }
478         break;
479     case Long:
480         if (abs.size >= 4) {
481             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
482         }
483         break;
484     case Quad:
485         if (abs.size >= 8) {
486             qtest_writeq(s, abs.addr, a.value);
487         }
488         break;
489     }
490 }
491 
492 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
493 {
494     enum Sizes {Byte, Word, Long, end_sizes};
495     struct {
496         uint8_t size;
497         uint8_t base;
498         uint8_t offset;
499     } a;
500     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
501         return;
502     }
503     memcpy(&a, data, sizeof(a));
504     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
505                                   a.base % fuzzable_pci_devices->len);
506     int devfn = dev->devfn;
507     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
508     switch (a.size %= end_sizes) {
509     case Byte:
510         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
511         break;
512     case Word:
513         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
514         break;
515     case Long:
516         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
517         break;
518     }
519 }
520 
521 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
522 {
523     enum Sizes {Byte, Word, Long, end_sizes};
524     struct {
525         uint8_t size;
526         uint8_t base;
527         uint8_t offset;
528         uint32_t value;
529     } a;
530     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
531         return;
532     }
533     memcpy(&a, data, sizeof(a));
534     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
535                                   a.base % fuzzable_pci_devices->len);
536     int devfn = dev->devfn;
537     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
538     switch (a.size %= end_sizes) {
539     case Byte:
540         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
541         break;
542     case Word:
543         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
544         break;
545     case Long:
546         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
547         break;
548     }
549 }
550 
551 static void op_add_dma_pattern(QTestState *s,
552                                const unsigned char *data, size_t len)
553 {
554     struct {
555         /*
556          * index and stride can be used to increment the index-th byte of the
557          * pattern by the value stride, for each loop of the pattern.
558          */
559         uint8_t index;
560         uint8_t stride;
561     } a;
562 
563     if (len < sizeof(a) + 1) {
564         return;
565     }
566     memcpy(&a, data, sizeof(a));
567     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
568     p.index = a.index % p.len;
569     g_array_append_val(dma_patterns, p);
570     return;
571 }
572 
573 static void op_clear_dma_patterns(QTestState *s,
574                                   const unsigned char *data, size_t len)
575 {
576     g_array_set_size(dma_patterns, 0);
577     dma_pattern_index = 0;
578 }
579 
580 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
581 {
582     qtest_clock_step_next(s);
583 }
584 
585 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
586 {
587     pci_disabled = true;
588 }
589 
590 static void handle_timeout(int sig)
591 {
592     if (qtest_log_enabled) {
593         fprintf(stderr, "[Timeout]\n");
594         fflush(stderr);
595     }
596 
597     /*
598      * If there is a crash, libfuzzer/ASAN forks a child to run an
599      * "llvm-symbolizer" process for printing out a pretty stacktrace. It
600      * communicates with this child using a pipe.  If we timeout+Exit, while
601      * libfuzzer is still communicating with the llvm-symbolizer child, we will
602      * be left with an orphan llvm-symbolizer process. Sometimes, this appears
603      * to lead to a deadlock in the forkserver. Use waitpid to check if there
604      * are any waitable children. If so, exit out of the signal-handler, and
605      * let libfuzzer finish communicating with the child, and exit, on its own.
606      */
607     if (waitpid(-1, NULL, WNOHANG) == 0) {
608         return;
609     }
610 
611     _Exit(0);
612 }
613 
614 /*
615  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
616  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
617  * specify the boundaries between commands. SEPARATOR is used to separate
618  * "operations" in the fuzz input. Why use a separator, instead of just using
619  * the operations' length to identify operation boundaries?
620  *   1. This is a simple way to support variable-length operations
621  *   2. This adds "stability" to the input.
622  *      For example take the input "AbBcgDefg", where there is no separator and
623  *      Opcodes are capitalized.
624  *      Simply, by removing the first byte, we end up with a very different
625  *      sequence:
626  *      BbcGdefg...
627  *      By adding a separator, we avoid this problem:
628  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
629  *      Since B uses two additional bytes as operands, the first "B" will be
630  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
631  *      bytes are likely to be pruned, eventually.
632  *
633  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
634  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
635  *  -dict), though this should not be necessary.
636  *
637  * As a result, the stream of bytes is converted into a sequence of commands.
638  * In a simplified example where SEPARATOR is 0xFF:
639  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
640  * becomes this sequence of commands:
641  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
642  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
643  * 01          -> op01 (-,0)    -> out (-,0)
644  * ...
645  *
646  * Note here that it is the job of the individual opcode functions to check
647  * that enough data was provided. I.e. in the last command out (,0), out needs
648  * to check that there is not enough data provided to select an address/value
649  * for the operation.
650  */
651 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
652 {
653     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
654         [OP_IN]                 = op_in,
655         [OP_OUT]                = op_out,
656         [OP_READ]               = op_read,
657         [OP_WRITE]              = op_write,
658         [OP_PCI_READ]           = op_pci_read,
659         [OP_PCI_WRITE]          = op_pci_write,
660         [OP_DISABLE_PCI]        = op_disable_pci,
661         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
662         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
663         [OP_CLOCK_STEP]         = op_clock_step,
664     };
665     const unsigned char *cmd = Data;
666     const unsigned char *nextcmd;
667     size_t cmd_len;
668     uint8_t op;
669 
670     if (fork() == 0) {
671         struct sigaction sact;
672         struct itimerval timer;
673         sigset_t set;
674         /*
675          * Sometimes the fuzzer will find inputs that take quite a long time to
676          * process. Often times, these inputs do not result in new coverage.
677          * Even if these inputs might be interesting, they can slow down the
678          * fuzzer, overall. Set a timeout for each command to avoid hurting
679          * performance, too much
680          */
681         if (timeout) {
682 
683             sigemptyset(&sact.sa_mask);
684             sact.sa_flags   = SA_NODEFER;
685             sact.sa_handler = handle_timeout;
686             sigaction(SIGALRM, &sact, NULL);
687 
688             sigemptyset(&set);
689             sigaddset(&set, SIGALRM);
690             pthread_sigmask(SIG_UNBLOCK, &set, NULL);
691 
692             memset(&timer, 0, sizeof(timer));
693             timer.it_value.tv_sec = timeout / USEC_IN_SEC;
694             timer.it_value.tv_usec = timeout % USEC_IN_SEC;
695         }
696 
697         op_clear_dma_patterns(s, NULL, 0);
698         pci_disabled = false;
699 
700         while (cmd && Size) {
701             /* Reset the timeout, each time we run a new command */
702             if (timeout) {
703                 setitimer(ITIMER_REAL, &timer, NULL);
704             }
705 
706             /* Get the length until the next command or end of input */
707             nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
708             cmd_len = nextcmd ? nextcmd - cmd : Size;
709 
710             if (cmd_len > 0) {
711                 /* Interpret the first byte of the command as an opcode */
712                 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
713                 ops[op](s, cmd + 1, cmd_len - 1);
714 
715                 /* Run the main loop */
716                 flush_events(s);
717             }
718             /* Advance to the next command */
719             cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
720             Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
721             g_array_set_size(dma_regions, 0);
722         }
723         _Exit(0);
724     } else {
725         flush_events(s);
726         wait(0);
727     }
728 }
729 
730 static void usage(void)
731 {
732     printf("Please specify the following environment variables:\n");
733     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
734     printf("QEMU_FUZZ_OBJECTS= "
735             "a space separated list of QOM type names for objects to fuzz\n");
736     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
737             "Try to avoid racy DMA double fetch bugs? %d by default\n",
738             avoid_double_fetches);
739     printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
740             "0 to disable. %d by default\n", timeout);
741     exit(0);
742 }
743 
744 static int locate_fuzz_memory_regions(Object *child, void *opaque)
745 {
746     const char *name;
747     MemoryRegion *mr;
748     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
749         mr = MEMORY_REGION(child);
750         if ((memory_region_is_ram(mr) ||
751             memory_region_is_ram_device(mr) ||
752             memory_region_is_rom(mr)) == false) {
753             name = object_get_canonical_path_component(child);
754             /*
755              * We don't want duplicate pointers to the same MemoryRegion, so
756              * try to remove copies of the pointer, before adding it.
757              */
758             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
759         }
760     }
761     return 0;
762 }
763 
764 static int locate_fuzz_objects(Object *child, void *opaque)
765 {
766     GString *type_name;
767     GString *path_name;
768     char *pattern = opaque;
769 
770     type_name = g_string_new(object_get_typename(child));
771     g_string_ascii_down(type_name);
772     if (g_pattern_match_simple(pattern, type_name->str)) {
773         /* Find and save ptrs to any child MemoryRegions */
774         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
775 
776         /*
777          * We matched an object. If its a PCI device, store a pointer to it so
778          * we can map BARs and fuzz its config space.
779          */
780         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
781             /*
782              * Don't want duplicate pointers to the same PCIDevice, so remove
783              * copies of the pointer, before adding it.
784              */
785             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
786             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
787         }
788     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
789         path_name = g_string_new(object_get_canonical_path_component(child));
790         g_string_ascii_down(path_name);
791         if (g_pattern_match_simple(pattern, path_name->str)) {
792             MemoryRegion *mr;
793             mr = MEMORY_REGION(child);
794             if ((memory_region_is_ram(mr) ||
795                  memory_region_is_ram_device(mr) ||
796                  memory_region_is_rom(mr)) == false) {
797                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
798             }
799         }
800         g_string_free(path_name, true);
801     }
802     g_string_free(type_name, true);
803     return 0;
804 }
805 
806 
807 static void pci_enum(gpointer pcidev, gpointer bus)
808 {
809     PCIDevice *dev = pcidev;
810     QPCIDevice *qdev;
811     int i;
812 
813     qdev = qpci_device_find(bus, dev->devfn);
814     g_assert(qdev != NULL);
815     for (i = 0; i < 6; i++) {
816         if (dev->io_regions[i].size) {
817             qpci_iomap(qdev, i, NULL);
818         }
819     }
820     qpci_device_enable(qdev);
821     g_free(qdev);
822 }
823 
824 static void generic_pre_fuzz(QTestState *s)
825 {
826     GHashTableIter iter;
827     MemoryRegion *mr;
828     QPCIBus *pcibus;
829     char **result;
830     GString *name_pattern;
831 
832     if (!getenv("QEMU_FUZZ_OBJECTS")) {
833         usage();
834     }
835     if (getenv("QTEST_LOG")) {
836         qtest_log_enabled = 1;
837     }
838     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
839         avoid_double_fetches = 1;
840     }
841     if (getenv("QEMU_FUZZ_TIMEOUT")) {
842         timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
843     }
844     qts_global = s;
845 
846     /*
847      * Create a special device that we can use to back DMA buffers at very
848      * high memory addresses
849      */
850     sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
851 
852     dma_regions = g_array_new(false, false, sizeof(address_range));
853     dma_patterns = g_array_new(false, false, sizeof(pattern));
854 
855     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
856     fuzzable_pci_devices   = g_ptr_array_new();
857 
858     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
859     for (int i = 0; result[i] != NULL; i++) {
860         name_pattern = g_string_new(result[i]);
861         /*
862          * Make the pattern lowercase. We do the same for all the MemoryRegion
863          * and Type names so the configs are case-insensitive.
864          */
865         g_string_ascii_down(name_pattern);
866         printf("Matching objects by name %s\n", result[i]);
867         object_child_foreach_recursive(qdev_get_machine(),
868                                     locate_fuzz_objects,
869                                     name_pattern->str);
870         g_string_free(name_pattern, true);
871     }
872     g_strfreev(result);
873     printf("This process will try to fuzz the following MemoryRegions:\n");
874 
875     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
876     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
877         printf("  * %s (size 0x%" PRIx64 ")\n",
878                object_get_canonical_path_component(&(mr->parent_obj)),
879                memory_region_size(mr));
880     }
881 
882     if (!g_hash_table_size(fuzzable_memoryregions)) {
883         printf("No fuzzable memory regions found...\n");
884         exit(1);
885     }
886 
887     pcibus = qpci_new_pc(s, NULL);
888     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
889     qpci_free_pc(pcibus);
890 
891     counter_shm_init();
892 }
893 
894 /*
895  * When libfuzzer gives us two inputs to combine, return a new input with the
896  * following structure:
897  *
898  * Input 1 (data1)
899  * SEPARATOR
900  * Clear out the DMA Patterns
901  * SEPARATOR
902  * Disable the pci_read/write instructions
903  * SEPARATOR
904  * Input 2 (data2)
905  *
906  * The idea is to collate the core behaviors of the two inputs.
907  * For example:
908  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
909  *          device functionality A
910  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
911  *          functionality B
912  *
913  * This function attempts to produce an input that:
914  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
915  *          functionality A device, replaces the DMA patterns with a single
916  *          patten, and triggers device functionality B.
917  */
918 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
919                                      uint8_t *data2, size_t size2, uint8_t *out,
920                                      size_t max_out_size, unsigned int seed)
921 {
922     size_t copy_len = 0, size = 0;
923 
924     /* Check that we have enough space for data1 and at least part of data2 */
925     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
926         return 0;
927     }
928 
929     /* Copy_Len in the first input */
930     copy_len = size1;
931     memcpy(out + size, data1, copy_len);
932     size += copy_len;
933     max_out_size -= copy_len;
934 
935     /* Append a separator */
936     copy_len = strlen(SEPARATOR);
937     memcpy(out + size, SEPARATOR, copy_len);
938     size += copy_len;
939     max_out_size -= copy_len;
940 
941     /* Clear out the DMA Patterns */
942     copy_len = 1;
943     if (copy_len) {
944         out[size] = OP_CLEAR_DMA_PATTERNS;
945     }
946     size += copy_len;
947     max_out_size -= copy_len;
948 
949     /* Append a separator */
950     copy_len = strlen(SEPARATOR);
951     memcpy(out + size, SEPARATOR, copy_len);
952     size += copy_len;
953     max_out_size -= copy_len;
954 
955     /* Disable PCI ops. Assume data1 took care of setting up PCI */
956     copy_len = 1;
957     if (copy_len) {
958         out[size] = OP_DISABLE_PCI;
959     }
960     size += copy_len;
961     max_out_size -= copy_len;
962 
963     /* Append a separator */
964     copy_len = strlen(SEPARATOR);
965     memcpy(out + size, SEPARATOR, copy_len);
966     size += copy_len;
967     max_out_size -= copy_len;
968 
969     /* Copy_Len over the second input */
970     copy_len = MIN(size2, max_out_size);
971     memcpy(out + size, data2, copy_len);
972     size += copy_len;
973     max_out_size -= copy_len;
974 
975     return  size;
976 }
977 
978 
979 static GString *generic_fuzz_cmdline(FuzzTarget *t)
980 {
981     GString *cmd_line = g_string_new(TARGET_NAME);
982     if (!getenv("QEMU_FUZZ_ARGS")) {
983         usage();
984     }
985     g_string_append_printf(cmd_line, " -display none \
986                                       -machine accel=qtest, \
987                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
988     return cmd_line;
989 }
990 
991 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
992 {
993     gchar *args;
994     const generic_fuzz_config *config;
995     g_assert(t->opaque);
996 
997     config = t->opaque;
998     setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
999     if (config->argfunc) {
1000         args = config->argfunc();
1001         setenv("QEMU_FUZZ_ARGS", args, 1);
1002         g_free(args);
1003     } else {
1004         g_assert_nonnull(config->args);
1005         setenv("QEMU_FUZZ_ARGS", config->args, 1);
1006     }
1007     setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
1008     return generic_fuzz_cmdline(t);
1009 }
1010 
1011 static void register_generic_fuzz_targets(void)
1012 {
1013     fuzz_add_target(&(FuzzTarget){
1014             .name = "generic-fuzz",
1015             .description = "Fuzz based on any qemu command-line args. ",
1016             .get_init_cmdline = generic_fuzz_cmdline,
1017             .pre_fuzz = generic_pre_fuzz,
1018             .fuzz = generic_fuzz,
1019             .crossover = generic_fuzz_crossover
1020     });
1021 
1022     GString *name;
1023     const generic_fuzz_config *config;
1024 
1025     for (int i = 0;
1026          i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
1027          i++) {
1028         config = predefined_configs + i;
1029         name = g_string_new("generic-fuzz");
1030         g_string_append_printf(name, "-%s", config->name);
1031         fuzz_add_target(&(FuzzTarget){
1032                 .name = name->str,
1033                 .description = "Predefined generic-fuzz config.",
1034                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
1035                 .pre_fuzz = generic_pre_fuzz,
1036                 .fuzz = generic_fuzz,
1037                 .crossover = generic_fuzz_crossover,
1038                 .opaque = (void *)config
1039         });
1040     }
1041 }
1042 
1043 fuzz_target_init(register_generic_fuzz_targets);
1044