xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision c2387413)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "exec/address-spaces.h"
23 #include "string.h"
24 #include "exec/memory.h"
25 #include "exec/ramblock.h"
26 #include "exec/address-spaces.h"
27 #include "hw/qdev-core.h"
28 #include "hw/pci/pci.h"
29 #include "hw/boards.h"
30 #include "generic_fuzz_configs.h"
31 
32 /*
33  * SEPARATOR is used to separate "operations" in the fuzz input
34  */
35 #define SEPARATOR "FUZZ"
36 
37 enum cmds {
38     OP_IN,
39     OP_OUT,
40     OP_READ,
41     OP_WRITE,
42     OP_PCI_READ,
43     OP_PCI_WRITE,
44     OP_DISABLE_PCI,
45     OP_ADD_DMA_PATTERN,
46     OP_CLEAR_DMA_PATTERNS,
47     OP_CLOCK_STEP,
48 };
49 
50 #define DEFAULT_TIMEOUT_US 100000
51 #define USEC_IN_SEC 1000000000
52 
53 #define MAX_DMA_FILL_SIZE 0x10000
54 
55 #define PCI_HOST_BRIDGE_CFG 0xcf8
56 #define PCI_HOST_BRIDGE_DATA 0xcfc
57 
58 typedef struct {
59     ram_addr_t addr;
60     ram_addr_t size; /* The number of bytes until the end of the I/O region */
61 } address_range;
62 
63 static useconds_t timeout = DEFAULT_TIMEOUT_US;
64 
65 static bool qtest_log_enabled;
66 
67 /*
68  * A pattern used to populate a DMA region or perform a memwrite. This is
69  * useful for e.g. populating tables of unique addresses.
70  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
71  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
72  */
73 typedef struct {
74     uint8_t index;      /* Index of a byte to increment by stride */
75     uint8_t stride;     /* Increment each index'th byte by this amount */
76     size_t len;
77     const uint8_t *data;
78 } pattern;
79 
80 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
81 static bool avoid_double_fetches;
82 
83 static QTestState *qts_global; /* Need a global for the DMA callback */
84 
85 /*
86  * List of memory regions that are children of QOM objects specified by the
87  * user for fuzzing.
88  */
89 static GHashTable *fuzzable_memoryregions;
90 static GPtrArray *fuzzable_pci_devices;
91 
92 struct get_io_cb_info {
93     int index;
94     int found;
95     address_range result;
96 };
97 
98 static int get_io_address_cb(Int128 start, Int128 size,
99                           const MemoryRegion *mr, void *opaque) {
100     struct get_io_cb_info *info = opaque;
101     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
102         if (info->index == 0) {
103             info->result.addr = (ram_addr_t)start;
104             info->result.size = (ram_addr_t)size;
105             info->found = 1;
106             return 1;
107         }
108         info->index--;
109     }
110     return 0;
111 }
112 
113 /*
114  * List of dma regions populated since the last fuzzing command. Used to ensure
115  * that we only write to each DMA address once, to avoid race conditions when
116  * building reproducers.
117  */
118 static GArray *dma_regions;
119 
120 static GArray *dma_patterns;
121 static int dma_pattern_index;
122 static bool pci_disabled;
123 
124 /*
125  * Allocate a block of memory and populate it with a pattern.
126  */
127 static void *pattern_alloc(pattern p, size_t len)
128 {
129     int i;
130     uint8_t *buf = g_malloc(len);
131     uint8_t sum = 0;
132 
133     for (i = 0; i < len; ++i) {
134         buf[i] = p.data[i % p.len];
135         if ((i % p.len) == p.index) {
136             buf[i] += sum;
137             sum += p.stride;
138         }
139     }
140     return buf;
141 }
142 
143 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
144 {
145     unsigned access_size_max = mr->ops->valid.max_access_size;
146 
147     /*
148      * Regions are assumed to support 1-4 byte accesses unless
149      * otherwise specified.
150      */
151     if (access_size_max == 0) {
152         access_size_max = 4;
153     }
154 
155     /* Bound the maximum access by the alignment of the address.  */
156     if (!mr->ops->impl.unaligned) {
157         unsigned align_size_max = addr & -addr;
158         if (align_size_max != 0 && align_size_max < access_size_max) {
159             access_size_max = align_size_max;
160         }
161     }
162 
163     /* Don't attempt accesses larger than the maximum.  */
164     if (l > access_size_max) {
165         l = access_size_max;
166     }
167     l = pow2floor(l);
168 
169     return l;
170 }
171 
172 /*
173  * Call-back for functions that perform DMA reads from guest memory. Confirm
174  * that the region has not already been populated since the last loop in
175  * generic_fuzz(), avoiding potential race-conditions, which we don't have
176  * a good way for reproducing right now.
177  */
178 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
179 {
180     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
181     if (!qts_global) {
182         return;
183     }
184 
185     /*
186      * Return immediately if:
187      * - We have no DMA patterns defined
188      * - The length of the DMA read request is zero
189      * - The DMA read is hitting an MR other than the machine's main RAM
190      * - The DMA request hits past the bounds of our RAM
191      */
192     if (dma_patterns->len == 0
193         || len == 0
194         || mr != current_machine->ram
195         || addr > current_machine->ram_size) {
196         return;
197     }
198 
199     /*
200      * If we overlap with any existing dma_regions, split the range and only
201      * populate the non-overlapping parts.
202      */
203     address_range region;
204     bool double_fetch = false;
205     for (int i = 0;
206          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
207          ++i) {
208         region = g_array_index(dma_regions, address_range, i);
209         if (addr < region.addr + region.size && addr + len > region.addr) {
210             double_fetch = true;
211             if (addr < region.addr
212                 && avoid_double_fetches) {
213                 fuzz_dma_read_cb(addr, region.addr - addr, mr);
214             }
215             if (addr + len > region.addr + region.size
216                 && avoid_double_fetches) {
217                 fuzz_dma_read_cb(region.addr + region.size,
218                         addr + len - (region.addr + region.size), mr);
219             }
220             return;
221         }
222     }
223 
224     /* Cap the length of the DMA access to something reasonable */
225     len = MIN(len, MAX_DMA_FILL_SIZE);
226 
227     address_range ar = {addr, len};
228     g_array_append_val(dma_regions, ar);
229     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
230     void *buf_base = pattern_alloc(p, ar.size);
231     void *buf = buf_base;
232     hwaddr l, addr1;
233     MemoryRegion *mr1;
234     while (len > 0) {
235         l = len;
236         mr1 = address_space_translate(first_cpu->as,
237                                       addr, &addr1, &l, true,
238                                       MEMTXATTRS_UNSPECIFIED);
239 
240         if (!(memory_region_is_ram(mr1) ||
241               memory_region_is_romd(mr1))) {
242             l = memory_access_size(mr1, l, addr1);
243         } else {
244             /* ROM/RAM case */
245             if (qtest_log_enabled) {
246                 /*
247                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
248                 * that will be written by qtest.c with a DMA tag, so we can reorder
249                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
250                 * command.
251                 */
252                 fprintf(stderr, "[DMA] ");
253                 if (double_fetch) {
254                     fprintf(stderr, "[DOUBLE-FETCH] ");
255                 }
256                 fflush(stderr);
257             }
258             qtest_memwrite(qts_global, addr, buf, l);
259         }
260         len -= l;
261         buf += l;
262         addr += l;
263 
264     }
265     g_free(buf_base);
266 
267     /* Increment the index of the pattern for the next DMA access */
268     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
269 }
270 
271 /*
272  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
273  * a physical address. To do this, we iterate over all of the matched
274  * MemoryRegions. Check whether each region exists within the particular io
275  * space. Return the absolute address of the offset within the index'th region
276  * that is a subregion of the io_space and the distance until the end of the
277  * memory region.
278  */
279 static bool get_io_address(address_range *result, AddressSpace *as,
280                             uint8_t index,
281                             uint32_t offset) {
282     FlatView *view;
283     view = as->current_map;
284     g_assert(view);
285     struct get_io_cb_info cb_info = {};
286 
287     cb_info.index = index;
288 
289     /*
290      * Loop around the FlatView until we match "index" number of
291      * fuzzable_memoryregions, or until we know that there are no matching
292      * memory_regions.
293      */
294     do {
295         flatview_for_each_range(view, get_io_address_cb , &cb_info);
296     } while (cb_info.index != index && !cb_info.found);
297 
298     *result = cb_info.result;
299     if (result->size) {
300         offset = offset % result->size;
301         result->addr += offset;
302         result->size -= offset;
303     }
304     return cb_info.found;
305 }
306 
307 static bool get_pio_address(address_range *result,
308                             uint8_t index, uint16_t offset)
309 {
310     /*
311      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
312      * can contain an addr that extends past the PIO space. When we pass this
313      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
314      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
315      * that the address here is within the PIO space limits.
316      */
317     bool found = get_io_address(result, &address_space_io, index, offset);
318     return result->addr <= 0xFFFF ? found : false;
319 }
320 
321 static bool get_mmio_address(address_range *result,
322                              uint8_t index, uint32_t offset)
323 {
324     return get_io_address(result, &address_space_memory, index, offset);
325 }
326 
327 static void op_in(QTestState *s, const unsigned char * data, size_t len)
328 {
329     enum Sizes {Byte, Word, Long, end_sizes};
330     struct {
331         uint8_t size;
332         uint8_t base;
333         uint16_t offset;
334     } a;
335     address_range abs;
336 
337     if (len < sizeof(a)) {
338         return;
339     }
340     memcpy(&a, data, sizeof(a));
341     if (get_pio_address(&abs, a.base, a.offset) == 0) {
342         return;
343     }
344 
345     switch (a.size %= end_sizes) {
346     case Byte:
347         qtest_inb(s, abs.addr);
348         break;
349     case Word:
350         if (abs.size >= 2) {
351             qtest_inw(s, abs.addr);
352         }
353         break;
354     case Long:
355         if (abs.size >= 4) {
356             qtest_inl(s, abs.addr);
357         }
358         break;
359     }
360 }
361 
362 static void op_out(QTestState *s, const unsigned char * data, size_t len)
363 {
364     enum Sizes {Byte, Word, Long, end_sizes};
365     struct {
366         uint8_t size;
367         uint8_t base;
368         uint16_t offset;
369         uint32_t value;
370     } a;
371     address_range abs;
372 
373     if (len < sizeof(a)) {
374         return;
375     }
376     memcpy(&a, data, sizeof(a));
377 
378     if (get_pio_address(&abs, a.base, a.offset) == 0) {
379         return;
380     }
381 
382     switch (a.size %= end_sizes) {
383     case Byte:
384         qtest_outb(s, abs.addr, a.value & 0xFF);
385         break;
386     case Word:
387         if (abs.size >= 2) {
388             qtest_outw(s, abs.addr, a.value & 0xFFFF);
389         }
390         break;
391     case Long:
392         if (abs.size >= 4) {
393             qtest_outl(s, abs.addr, a.value);
394         }
395         break;
396     }
397 }
398 
399 static void op_read(QTestState *s, const unsigned char * data, size_t len)
400 {
401     enum Sizes {Byte, Word, Long, Quad, end_sizes};
402     struct {
403         uint8_t size;
404         uint8_t base;
405         uint32_t offset;
406     } a;
407     address_range abs;
408 
409     if (len < sizeof(a)) {
410         return;
411     }
412     memcpy(&a, data, sizeof(a));
413 
414     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
415         return;
416     }
417 
418     switch (a.size %= end_sizes) {
419     case Byte:
420         qtest_readb(s, abs.addr);
421         break;
422     case Word:
423         if (abs.size >= 2) {
424             qtest_readw(s, abs.addr);
425         }
426         break;
427     case Long:
428         if (abs.size >= 4) {
429             qtest_readl(s, abs.addr);
430         }
431         break;
432     case Quad:
433         if (abs.size >= 8) {
434             qtest_readq(s, abs.addr);
435         }
436         break;
437     }
438 }
439 
440 static void op_write(QTestState *s, const unsigned char * data, size_t len)
441 {
442     enum Sizes {Byte, Word, Long, Quad, end_sizes};
443     struct {
444         uint8_t size;
445         uint8_t base;
446         uint32_t offset;
447         uint64_t value;
448     } a;
449     address_range abs;
450 
451     if (len < sizeof(a)) {
452         return;
453     }
454     memcpy(&a, data, sizeof(a));
455 
456     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
457         return;
458     }
459 
460     switch (a.size %= end_sizes) {
461     case Byte:
462             qtest_writeb(s, abs.addr, a.value & 0xFF);
463         break;
464     case Word:
465         if (abs.size >= 2) {
466             qtest_writew(s, abs.addr, a.value & 0xFFFF);
467         }
468         break;
469     case Long:
470         if (abs.size >= 4) {
471             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
472         }
473         break;
474     case Quad:
475         if (abs.size >= 8) {
476             qtest_writeq(s, abs.addr, a.value);
477         }
478         break;
479     }
480 }
481 
482 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
483 {
484     enum Sizes {Byte, Word, Long, end_sizes};
485     struct {
486         uint8_t size;
487         uint8_t base;
488         uint8_t offset;
489     } a;
490     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
491         return;
492     }
493     memcpy(&a, data, sizeof(a));
494     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
495                                   a.base % fuzzable_pci_devices->len);
496     int devfn = dev->devfn;
497     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
498     switch (a.size %= end_sizes) {
499     case Byte:
500         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
501         break;
502     case Word:
503         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
504         break;
505     case Long:
506         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
507         break;
508     }
509 }
510 
511 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
512 {
513     enum Sizes {Byte, Word, Long, end_sizes};
514     struct {
515         uint8_t size;
516         uint8_t base;
517         uint8_t offset;
518         uint32_t value;
519     } a;
520     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
521         return;
522     }
523     memcpy(&a, data, sizeof(a));
524     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
525                                   a.base % fuzzable_pci_devices->len);
526     int devfn = dev->devfn;
527     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
528     switch (a.size %= end_sizes) {
529     case Byte:
530         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
531         break;
532     case Word:
533         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
534         break;
535     case Long:
536         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
537         break;
538     }
539 }
540 
541 static void op_add_dma_pattern(QTestState *s,
542                                const unsigned char *data, size_t len)
543 {
544     struct {
545         /*
546          * index and stride can be used to increment the index-th byte of the
547          * pattern by the value stride, for each loop of the pattern.
548          */
549         uint8_t index;
550         uint8_t stride;
551     } a;
552 
553     if (len < sizeof(a) + 1) {
554         return;
555     }
556     memcpy(&a, data, sizeof(a));
557     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
558     p.index = a.index % p.len;
559     g_array_append_val(dma_patterns, p);
560     return;
561 }
562 
563 static void op_clear_dma_patterns(QTestState *s,
564                                   const unsigned char *data, size_t len)
565 {
566     g_array_set_size(dma_patterns, 0);
567     dma_pattern_index = 0;
568 }
569 
570 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
571 {
572     qtest_clock_step_next(s);
573 }
574 
575 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
576 {
577     pci_disabled = true;
578 }
579 
580 static void handle_timeout(int sig)
581 {
582     if (qtest_log_enabled) {
583         fprintf(stderr, "[Timeout]\n");
584         fflush(stderr);
585     }
586     _Exit(0);
587 }
588 
589 /*
590  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
591  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
592  * specify the boundaries between commands. SEPARATOR is used to separate
593  * "operations" in the fuzz input. Why use a separator, instead of just using
594  * the operations' length to identify operation boundaries?
595  *   1. This is a simple way to support variable-length operations
596  *   2. This adds "stability" to the input.
597  *      For example take the input "AbBcgDefg", where there is no separator and
598  *      Opcodes are capitalized.
599  *      Simply, by removing the first byte, we end up with a very different
600  *      sequence:
601  *      BbcGdefg...
602  *      By adding a separator, we avoid this problem:
603  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
604  *      Since B uses two additional bytes as operands, the first "B" will be
605  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
606  *      bytes are likely to be pruned, eventually.
607  *
608  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
609  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
610  *  -dict), though this should not be necessary.
611  *
612  * As a result, the stream of bytes is converted into a sequence of commands.
613  * In a simplified example where SEPARATOR is 0xFF:
614  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
615  * becomes this sequence of commands:
616  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
617  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
618  * 01          -> op01 (-,0)    -> out (-,0)
619  * ...
620  *
621  * Note here that it is the job of the individual opcode functions to check
622  * that enough data was provided. I.e. in the last command out (,0), out needs
623  * to check that there is not enough data provided to select an address/value
624  * for the operation.
625  */
626 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
627 {
628     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
629         [OP_IN]                 = op_in,
630         [OP_OUT]                = op_out,
631         [OP_READ]               = op_read,
632         [OP_WRITE]              = op_write,
633         [OP_PCI_READ]           = op_pci_read,
634         [OP_PCI_WRITE]          = op_pci_write,
635         [OP_DISABLE_PCI]        = op_disable_pci,
636         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
637         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
638         [OP_CLOCK_STEP]         = op_clock_step,
639     };
640     const unsigned char *cmd = Data;
641     const unsigned char *nextcmd;
642     size_t cmd_len;
643     uint8_t op;
644 
645     if (fork() == 0) {
646         /*
647          * Sometimes the fuzzer will find inputs that take quite a long time to
648          * process. Often times, these inputs do not result in new coverage.
649          * Even if these inputs might be interesting, they can slow down the
650          * fuzzer, overall. Set a timeout to avoid hurting performance, too much
651          */
652         if (timeout) {
653             struct sigaction sact;
654             struct itimerval timer;
655 
656             sigemptyset(&sact.sa_mask);
657             sact.sa_flags   = SA_NODEFER;
658             sact.sa_handler = handle_timeout;
659             sigaction(SIGALRM, &sact, NULL);
660 
661             memset(&timer, 0, sizeof(timer));
662             timer.it_value.tv_sec = timeout / USEC_IN_SEC;
663             timer.it_value.tv_usec = timeout % USEC_IN_SEC;
664             setitimer(ITIMER_VIRTUAL, &timer, NULL);
665         }
666 
667         op_clear_dma_patterns(s, NULL, 0);
668         pci_disabled = false;
669 
670         while (cmd && Size) {
671             /* Get the length until the next command or end of input */
672             nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
673             cmd_len = nextcmd ? nextcmd - cmd : Size;
674 
675             if (cmd_len > 0) {
676                 /* Interpret the first byte of the command as an opcode */
677                 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
678                 ops[op](s, cmd + 1, cmd_len - 1);
679 
680                 /* Run the main loop */
681                 flush_events(s);
682             }
683             /* Advance to the next command */
684             cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
685             Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
686             g_array_set_size(dma_regions, 0);
687         }
688         _Exit(0);
689     } else {
690         flush_events(s);
691         wait(0);
692     }
693 }
694 
695 static void usage(void)
696 {
697     printf("Please specify the following environment variables:\n");
698     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
699     printf("QEMU_FUZZ_OBJECTS= "
700             "a space separated list of QOM type names for objects to fuzz\n");
701     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
702             "Try to avoid racy DMA double fetch bugs? %d by default\n",
703             avoid_double_fetches);
704     printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
705             "0 to disable. %d by default\n", timeout);
706     exit(0);
707 }
708 
709 static int locate_fuzz_memory_regions(Object *child, void *opaque)
710 {
711     const char *name;
712     MemoryRegion *mr;
713     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
714         mr = MEMORY_REGION(child);
715         if ((memory_region_is_ram(mr) ||
716             memory_region_is_ram_device(mr) ||
717             memory_region_is_rom(mr)) == false) {
718             name = object_get_canonical_path_component(child);
719             /*
720              * We don't want duplicate pointers to the same MemoryRegion, so
721              * try to remove copies of the pointer, before adding it.
722              */
723             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
724         }
725     }
726     return 0;
727 }
728 
729 static int locate_fuzz_objects(Object *child, void *opaque)
730 {
731     char *pattern = opaque;
732     if (g_pattern_match_simple(pattern, object_get_typename(child))) {
733         /* Find and save ptrs to any child MemoryRegions */
734         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
735 
736         /*
737          * We matched an object. If its a PCI device, store a pointer to it so
738          * we can map BARs and fuzz its config space.
739          */
740         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
741             /*
742              * Don't want duplicate pointers to the same PCIDevice, so remove
743              * copies of the pointer, before adding it.
744              */
745             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
746             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
747         }
748     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
749         if (g_pattern_match_simple(pattern,
750             object_get_canonical_path_component(child))) {
751             MemoryRegion *mr;
752             mr = MEMORY_REGION(child);
753             if ((memory_region_is_ram(mr) ||
754                  memory_region_is_ram_device(mr) ||
755                  memory_region_is_rom(mr)) == false) {
756                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
757             }
758         }
759     }
760     return 0;
761 }
762 
763 
764 static void pci_enum(gpointer pcidev, gpointer bus)
765 {
766     PCIDevice *dev = pcidev;
767     QPCIDevice *qdev;
768     int i;
769 
770     qdev = qpci_device_find(bus, dev->devfn);
771     g_assert(qdev != NULL);
772     for (i = 0; i < 6; i++) {
773         if (dev->io_regions[i].size) {
774             qpci_iomap(qdev, i, NULL);
775         }
776     }
777     qpci_device_enable(qdev);
778     g_free(qdev);
779 }
780 
781 static void generic_pre_fuzz(QTestState *s)
782 {
783     GHashTableIter iter;
784     MemoryRegion *mr;
785     QPCIBus *pcibus;
786     char **result;
787 
788     if (!getenv("QEMU_FUZZ_OBJECTS")) {
789         usage();
790     }
791     if (getenv("QTEST_LOG")) {
792         qtest_log_enabled = 1;
793     }
794     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
795         avoid_double_fetches = 1;
796     }
797     if (getenv("QEMU_FUZZ_TIMEOUT")) {
798         timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
799     }
800     qts_global = s;
801 
802     dma_regions = g_array_new(false, false, sizeof(address_range));
803     dma_patterns = g_array_new(false, false, sizeof(pattern));
804 
805     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
806     fuzzable_pci_devices   = g_ptr_array_new();
807 
808     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
809     for (int i = 0; result[i] != NULL; i++) {
810         printf("Matching objects by name %s\n", result[i]);
811         object_child_foreach_recursive(qdev_get_machine(),
812                                     locate_fuzz_objects,
813                                     result[i]);
814     }
815     g_strfreev(result);
816     printf("This process will try to fuzz the following MemoryRegions:\n");
817 
818     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
819     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
820         printf("  * %s (size %lx)\n",
821                object_get_canonical_path_component(&(mr->parent_obj)),
822                (uint64_t)mr->size);
823     }
824 
825     if (!g_hash_table_size(fuzzable_memoryregions)) {
826         printf("No fuzzable memory regions found...\n");
827         exit(1);
828     }
829 
830     pcibus = qpci_new_pc(s, NULL);
831     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
832     qpci_free_pc(pcibus);
833 
834     counter_shm_init();
835 }
836 
837 /*
838  * When libfuzzer gives us two inputs to combine, return a new input with the
839  * following structure:
840  *
841  * Input 1 (data1)
842  * SEPARATOR
843  * Clear out the DMA Patterns
844  * SEPARATOR
845  * Disable the pci_read/write instructions
846  * SEPARATOR
847  * Input 2 (data2)
848  *
849  * The idea is to collate the core behaviors of the two inputs.
850  * For example:
851  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
852  *          device functionality A
853  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
854  *          functionality B
855  *
856  * This function attempts to produce an input that:
857  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
858  *          functionality A device, replaces the DMA patterns with a single
859  *          patten, and triggers device functionality B.
860  */
861 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
862                                      uint8_t *data2, size_t size2, uint8_t *out,
863                                      size_t max_out_size, unsigned int seed)
864 {
865     size_t copy_len = 0, size = 0;
866 
867     /* Check that we have enough space for data1 and at least part of data2 */
868     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
869         return 0;
870     }
871 
872     /* Copy_Len in the first input */
873     copy_len = size1;
874     memcpy(out + size, data1, copy_len);
875     size += copy_len;
876     max_out_size -= copy_len;
877 
878     /* Append a separator */
879     copy_len = strlen(SEPARATOR);
880     memcpy(out + size, SEPARATOR, copy_len);
881     size += copy_len;
882     max_out_size -= copy_len;
883 
884     /* Clear out the DMA Patterns */
885     copy_len = 1;
886     if (copy_len) {
887         out[size] = OP_CLEAR_DMA_PATTERNS;
888     }
889     size += copy_len;
890     max_out_size -= copy_len;
891 
892     /* Append a separator */
893     copy_len = strlen(SEPARATOR);
894     memcpy(out + size, SEPARATOR, copy_len);
895     size += copy_len;
896     max_out_size -= copy_len;
897 
898     /* Disable PCI ops. Assume data1 took care of setting up PCI */
899     copy_len = 1;
900     if (copy_len) {
901         out[size] = OP_DISABLE_PCI;
902     }
903     size += copy_len;
904     max_out_size -= copy_len;
905 
906     /* Append a separator */
907     copy_len = strlen(SEPARATOR);
908     memcpy(out + size, SEPARATOR, copy_len);
909     size += copy_len;
910     max_out_size -= copy_len;
911 
912     /* Copy_Len over the second input */
913     copy_len = MIN(size2, max_out_size);
914     memcpy(out + size, data2, copy_len);
915     size += copy_len;
916     max_out_size -= copy_len;
917 
918     return  size;
919 }
920 
921 
922 static GString *generic_fuzz_cmdline(FuzzTarget *t)
923 {
924     GString *cmd_line = g_string_new(TARGET_NAME);
925     if (!getenv("QEMU_FUZZ_ARGS")) {
926         usage();
927     }
928     g_string_append_printf(cmd_line, " -display none \
929                                       -machine accel=qtest, \
930                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
931     return cmd_line;
932 }
933 
934 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
935 {
936     gchar *args;
937     const generic_fuzz_config *config;
938     g_assert(t->opaque);
939 
940     config = t->opaque;
941     setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
942     if (config->argfunc) {
943         args = config->argfunc();
944         setenv("QEMU_FUZZ_ARGS", args, 1);
945         g_free(args);
946     } else {
947         g_assert_nonnull(config->args);
948         setenv("QEMU_FUZZ_ARGS", config->args, 1);
949     }
950     setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
951     return generic_fuzz_cmdline(t);
952 }
953 
954 static void register_generic_fuzz_targets(void)
955 {
956     fuzz_add_target(&(FuzzTarget){
957             .name = "generic-fuzz",
958             .description = "Fuzz based on any qemu command-line args. ",
959             .get_init_cmdline = generic_fuzz_cmdline,
960             .pre_fuzz = generic_pre_fuzz,
961             .fuzz = generic_fuzz,
962             .crossover = generic_fuzz_crossover
963     });
964 
965     GString *name;
966     const generic_fuzz_config *config;
967 
968     for (int i = 0;
969          i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
970          i++) {
971         config = predefined_configs + i;
972         name = g_string_new("generic-fuzz");
973         g_string_append_printf(name, "-%s", config->name);
974         fuzz_add_target(&(FuzzTarget){
975                 .name = name->str,
976                 .description = "Predefined generic-fuzz config.",
977                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
978                 .pre_fuzz = generic_pre_fuzz,
979                 .fuzz = generic_fuzz,
980                 .crossover = generic_fuzz_crossover,
981                 .opaque = (void *)config
982         });
983     }
984 }
985 
986 fuzz_target_init(register_generic_fuzz_targets);
987